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Abstract
Secure and high-throughput authentication systems require materials with uniquely identifiable responses that can be remotely detected and rapidly 
disambiguated. To this end, complex electromagnetic responses from arrangements of amorphous ferromagnetic microwires were analyzed using 
machine learning. These novel materials deliver maximal spectral dispersion when the frequency of incident electromagnetic radiation matches the 
microwire resonance. Utilizing data obtained from 225 unique microwire arrangements, a neural network reproduced the response distribution of 
unseen data to a confidence level of 90%, with a mean square error less than 0.01. This favorable performance affirms the potential of magnetic 
microwires for use in tags for secure article surveillance systems.

Introduction
Secure, high-throughput, and contactless tracking of assets is 
an enormous challenge for supply chain management as well 
as for monitoring and controlling illicit transactions involv-
ing counterfeit currency and documents, pirated goods, and 
substandard/falsified pharmaceuticals.[1,2] It is clear that sus-
tained advances in materials, devices, and data handling are 
needed to address this complex and escalating issue. While 
radio-frequency identification (RFID) technologies, including 
chipless RFID,[3] can satisfy some of these requirements, their 
expanded deployment remains constrained by cost, physical 
size, and difficulties associated with storing sufficient data to 
uniquely identify the signatures of extremely large numbers of 
individual objects. At their essence, these identification systems 
consist of an electromagnetic (EM)-active tag, a transmitter 
to deliver interrogating incident EM radiation to the tag, and 
a receiver to detect and analyze the subsequently emitted EM 
signal. Although increased complexity in the received EM 
signals, or spectra, provides a larger portfolio of potentially 
unique tag signatures, at the same time it greatly increases the 
challenge of disambiguating these signals and validating the 
objects of interest.

To address this imperative, a system encompassing creation, 
interrogation, and disambiguation of complex electromagnetic 

signatures is described here. Signals emitted from EM-active 
“tags” comprising specified arrangements of unique micron-
scaled magnetic objects—amorphous magnetic microwires—
were analyzed using machine learning in the form of neural 
networks.[4] Results reported here were obtained from a surpris-
ingly small number (225) of measurements, and these results 
confirmed parameterized learning of the response function to 
successfully reproduce training and testing set data to a com-
mendable confidence level in excess of 90%. In this manner, a 
proof-of-concept demonstration has been achieved, allowing 
contemplation of strategies to refine the parameter space and 
physical configuration of the magnetic tags for improved per-
formance and applicability.

The uniqueness of this current work is derived from the 
application and integration of three typically separate knowl-
edge domains—advanced magnetic materials,[5] machine learn-
ing,[6] and information  theory[7]—to address a complex systems 
challenge. Below we briefly elaborate on the novelty and sig-
nificance of combining these three disciplinary arenas. As an 
innovative composite material, glass-coated magnetic microw-
ires have the ability to modulate reflection or transmission of 
microwave (GHz) EM radiation incident on their surface, with 
maximum dispersion achieved when the incident frequency is 
matched to the microwire antenna resonance frequency. The 
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emitted microwire signal is very sensitive to details of chemical 
composition as well as to environmental parameters (including 
ambient magnetic field, strain, and temperature).[8,9] Further, 
the response of a multiwire ensemble is influenced by the num-
ber, length, and proximity of the constituent wires.[10,11] Overall 
this abundance of controllable parameters provides an immense 
and highly versatile palette of variables and conditions to real-
ize unique tracking “tags” comprised of magnetic microwires. 
The high-fidelity reproduction by a neural network of the 
electromagnetic response of these magnetic microwire arrays 
allows us to envision simulating a variety of materials composi-
tions in conjunction with physical configurations, to efficiently 
explore and survey a much larger tag space.[12,13] It is notable 
that our neural networks achieve good performance with train-
ing dataset sizes on the order of a few hundreds, while machine 
learning and especially neural networks typically require data-
set sizes on the order of 10,000 to a few million; this aspect is 
noted within the materials science community as well.[14] With 
the tag modeled as a neural network, we are now in a position 
to innovate on the neural network architecture front to create 
efficient encoder and decoder for tags.[15,16] In follow-on pre-
liminary work,[17] we leverage the proof-of-concept described 
in this paper to create a general technique for creating a practi-
cal tagging system from any scanning technology employing a 
novel autoencoder-based neural network architecture.

Materials and methods
Magnetic microwires and their response
Amorphous glass-coated ferromagnetic microwires derive their 
very high sensitivity to applied magnetic  fields[18–20] from inter-
play between their atomic and magnetic structures.[21] In addi-
tion to ultrasoft magnetic behavior (coercivity H C ∼ 0.2 Oe), 
these materials can exhibit a giant magnetoimpedance (GMI) 
effect or a ferromagnetic resonance (FMR) effect;[22–24] in the 
absence of applied electric current, this phenomenon is referred 
to as the “antenna effect.”[22–24] Here, investigation is focused 
on the antenna effect response of amorphous magnetic microw-
ires comprising of an amorphous metallic ferromagnetic core 
(typical radius 10–20 microns) covered by uniform borosilicate 
glass (i.e., pyrex) coating of approximately 20–30 microns in 
thickness. The microwires of this study were procured from 
Microfir Tehnologii Industriale Ltd. (Moldova) with a consist-
ent composition of (Co0.94Fe0.06)75Si10B15 and an outer wire 
diameter of 75–100 microns. Data were collected from configu-
rations of parallel wire arrays (array specifics provided in the 
following section) that were mounted on a piece of dielectric 
plastic film and secured with clear adhesive tape.

The initial neural network computational analyses were 
performed on 225 separate and unique measurements (aka 
configurational response pairs) of the antenna effect response 
collected from the glass-coated amorphous magnetic microw-
ires arranged in a variety of configurations as tags. The 
microwire arrays were assessed in the frequency domain in the 
range 1–4 GHz using two double-ridged guide horn antennas 

(ETS-LINDGREN model 3115) as an emitter and a receiver; 
these were spaced 1.2 m apart to ensure a far-field configura-
tion. The antennas were connected to a programmable network 
analyzer (Agilent E8362B PNA Series Network Analyzer). The 
microwire arrays were oriented perpendicular to the midline 
connecting the two antennas, perpendicular to the direction of 
the incident EM waves. After open-air calibration, the scatter-
ing parameters S21 , which quantify in decibels (dB) the ratio of 
the emitting antenna power ( P1 ) to the receiving antenna power 
( P2 ), were determined according to Equation 1:

The resultant EM scattering information was collected in the 
frequency domain where the measured S21 scattering coefficient 
presents a minimum.

Neural network architecture and training
Using the data collected as described above, a neural-network-
based machine learning  model[4,25] was developed and opti-
mized to predict the S21 response generated by a given configu-
ration of magnetic microwires. The microwire configurations 
used to generate signals were initially defined using three fea-
tures: (a) the length of the microwires (either 3, 4, or 8 cm), (b) 
the number of the microwires (between 1 and 16), and (c) the 
separation between microwires (ranging from 0.4 to 20 cm). 
The response of a particular configuration was represented by a 
200-dimensional vector of dB values denoting the S21 response, 
with each dB value corresponding to fixed, linearly separated 
frequencies in the 1–4 GHz range.

These three features describing the microwire configurations 
were input into the neural network model with a single hidden 
layer of 1000 artificial neurons with rectified linear unit (ReLU) 
activations.[26,27] In the field of neural networks, the term “neu-
rons” refer to an operation that performs a weighted sum of all 
the inputs, with the weights being parameters that are optimized 
using training data. Batch  normalization[28] was applied to the 
hidden layer before the output layer produced an output of a 
200-dimensional vector designed to match the recorded S21 
response. The model was trained on Mean Square Error (MSE) 
loss using the popular ADAM optimizer,[29] with a learning 
rate hyperparameter value of 1e−3 and a L2  regularization[30] 
hyperparameter value of 1e−6 for up to 2000 epochs. The MSE 
represents a statistical assessment of the validity of the model 
and is the average of the square of the differences between the 
target dB values and predicted dB values, which is minimized 
during the training phase. From the total 225 (configuration, 
response) pairs that were initially studied, a randomly chosen 
selection of 202 measurements (90% of the total number) was 
used for training the neural network model, while the remaining 
23 measurements (10% of the total number) were employed as 
“unseen” data to evaluate the model’s performance. This 90-10 
split was performed 10 times to quantify the error associated 
with the random splitting of the training and testing data.

(1)S21 = 20 · log
10

P2

P1
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Results and discussion

Initial outcomes
The neural network favorably reproduced the response distribu-
tion of unseen data to a confidence level of 90%, with a quite 
favorable mean square error less than 0.01. The model out-
comes are provided in the first two columns of Table I that con-
tain the MSE values resulting from both the training and testing 
phases. Corresponding plots of the actual and the predicted 
responses obtained from a selection of the unseen microwire 
configurations are provided in Fig. 1. Good agreement between 
the actual data and the predicted data is visually evident, and is 
anticipated to improve further as more configurational response 
pairs are analyzed by this neural network model. The high qual-
ity of the predictions, as obtained from only 202 separate spec-
tral response measurements, is very noteworthy as conventional 
machine learning wisdom indicates that thousands of images 
are typically necessary for achievement of good predictions.[31]

Calibrating the neural network model 
for new environments
To evaluate the performance of the model in evaluating 
microwire array data collected in new environments arising 
from altered measurement conditions, effects of calibrating, 
or fine-tuning, the neural network was investigated using a 
small subset of the additional measurements (referred to as 
the calibration set). Of particular note are the differences in 

how well shielded the measurement apparatus were to the 
ambient magnetic fields and temperatures, allowing us to 
understand our model’s performance in more real-life envi-
ronments as opposed to a shielded lab environment. In the 
absence of this calibration step, the performance of the origi-
nal neural network applied to the additional data obtained in 
a new environment was noted to degrade; that is, model pre-
dictions of the microwire array response measured in a new 
environment resulted in greatly increased MSE values (see 
Table I, Column 3). To perform this fine-tuning, the original 
neural network model was trained using this calibration set 

Figure 1.  Actual responses (blue traces) and predicted responses (orange traces) for the scattering coefficient data ( S21 ) originating from 
various unseen magnetic microwire tag configurations.

Table I.  Resultant mean square error (MSE) values and correspond-
ing error in magnetic microwire transmission coefficient responses 
( S21).

The neural network model was developed from 202 randomly  
chosen training measurements and was tested on 23 unseen  
measurements. The final two columns in this Table denote the  
performance of the neural network in the new environment  
(a different measurement condition) both without and with  
calibration/fine-tuning.

Original training 
MSE value

Original testing 
MSE value

Testing MSE 
value of original 
model applied 
to data obtained 
in a new envi-
ronment

Testing MSE 
value of fine-
tuned model 
applied to data in 
a new environ-
ment

0.002 ± 0.0005 0.0075 ± 0.0007 0.02 ± 0.009 0.008 ± 0.0006
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for up to 2000 epochs, as was conducted earlier, with the 
other training hyper-parameters kept fixed as described in the 
previous section. It was found that calibration sets consist-
ing of as few as 30 additional measurements (compared to 
the 202 measurements required for the initial training activ-
ity) were sufficient to enable the model to detect nuances 
of responses to the new environment and improve the MSE 
values, restoring them back to their original low levels (see 
Table I, Column 4). Note that quantification of error in the 
MSE values, arising from random selection of the original 
training data or the calibration set, is obtained from 10 rep-
etitions of the fine-tuning step, each conducted with a dif-
ferent random calibration set. This allows us to average out 
fluctuations in the results due to the randomness in the neural 
network training process, and we report the observed fluctua-
tions as a confidence interval around the average MSE values.

Analyzing the sensitivity of machine 
learning models
Once the models were able to accurately predict responses 
obtained from various magnetic microwire tag configurations 
and adapt to changing environments, the sensitivity of the 
machine learning models to differences in these configura-
tions was investigated. That is, it was desired to determine 
the smallest change in response that the machine learning 
model could correctly accommodate. This aspect was inves-
tigated by acquiring and analyzing new datasets that probed 
three additional microwire configuration features. The first 
additional feature was the angle θ between the wire orienta-
tion and line connecting the antennas; this feature tracked 
in-plane changes in the direction of the emitted EM wave. 
The remaining two additional features, expressed as two-
dimensional x and y coordinates, tracked the in-plane position 
of the microwire relative to the midline position between the 
emitter and receiver antennas. The x-shift described the dis-
tance that the wires were displaced along the direct transmit-
ter/receiver line (closer to/farther away from the antennas). 
The y-shift was perpendicular to the x-shift.

Preliminary observations indicate that the spectral predic-
tions returned by the machine learning models are poor when 
the angle θ is changed from its original value of zero degrees. 
We hypothesize that these poor results are due to the response 
changing as the wires move away from being perpendicular 
to the direction of the electromagnetic wave propagation. The 
machine learning models, in turn, could not compensate for 
this change in the nature of the response. The spectral predic-
tions of the machine learning models are better for the x-shift; 
however, even with respect to that feature, the MSE values 
were worse than those reported in previous sections. While 
the reasons underlying these results are not clear at the current 
time, it is believed that they may have their origins in details of 
the detected response in near-field versus far-field conditions. 
In contrast, spectra produced from the y-shift is easy for the 
model to predict, with MSE values in the same range as the 

results depicted in Table I. In fact, significant differences in 
responses produced by microwire arrays that have been shifted 
only in the y-direction are quite distinguishable.

Conclusions
Successful prediction ( < 0.01 mean squared error (MSE), 
within 90% confidence level) of “unseen” high-frequency 
electromagnetic responses measured from 2D arrays of amor-
phous ferromagnetic microwires was achieved using neural 
network-based machine learning. These results, obtained 
from a surprisingly small number (225) measurements, were 
extended using an additional 30 measurements to fine-tune 
the model for improved robustness to varied environments.

This work combines magnetic materials science, specifi-
cally the electromagnetic response of amorphous magnetic 
microwires, with machine learning techniques for training 
neural networks to faithfully reproduce the microwire GHz 
antenna responses with high fidelity. We demonstrate that 
with the carefully chosen neural network architectures and 
clean data, it is possible to achieve good performance using 
very few measurements compared to what is considered the 
norm in neural network literature.[31] Interpreting the results 
of the machine learning model to improve the physical under-
standing of the properties of magnetic microwire signatures 
is part of ongoing and future work. Considering the overall 
abundance of controllable parameters enabled by the mag-
netic microwires, we have an immense and highly versatile 
palette of variables and conditions to realize unique track-
ing “tags.” Combined with the high-fidelity reproduction by 
a neural network of the electromagnetic response of these 
magnetic microwire arrays allows us to envision simulat-
ing a variety of materials compositions alongside varying 
physical configurations of these materials, to efficiently cap-
ture and understand large scale tag spaces.[12,13] Our results 
allow us to model tags using a neural network, which allow 
innovative neural network architectures to create efficient 
encoder and decoder for tags to and from their electromag-
netic responses.[15,16] In follow-on preliminary work,[17] 
by employing a novel autoencoder architecture along with 
concepts from information theory, we leverage the proof-of-
concept described in this paper to create a general algorithm 
for creating a practical tagging system from any scanning 
technology.

These proof-of-concept results are but the necessary first 
step in a novel approach toward the eventual goal of hid-
den machine-readable authentication of objects (equipment, 
medical and pharmaceutical products, materials, documents, 
currency, etc.). We note that the security of supply chains in 
the USA is a market estimated to be over a billion dollars in 
size in 2021 and growing at a CAGR greater than 5% . Our 
approach and architecture are very general. With any scan-
ning technology modeled as a deep network, we envision a 
cyber-physical system—the cyber half constitutes the brains 
exploring and organizing the tag space, while the physical 
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robotic half constitutes the brawn, creating and validating 
actual physical tags, and the two work in close coordination 
to create an efficient and practically usable tag system.
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