

Using Deep Neural Networks for Disambiguation of Magnetic Microwire Responses DS01 Symposium — MRS 2022 Spring Meeting

Akshar Varma^{*, 1}, X. Zhang², B. Lejeune², L. C. Almagro⁴, R. P. del Real^{5, 6}, M. P. M. Palacios^{4, 6}, O. Fitchorova^{2,8}, L. H. Lewis^{2, 8} and R. Sundaram¹

*varma.ak@northeastern.edu ¹Khoury College of Computer Sciences, Northeastern University, USA ²College of Engineering, Northeastern University, USA ⁴Department of Physics, Complutense University of Madrid, Spain ⁵Instituto de Ciencia de Materiales de Madrid (ICMM), Spain ⁶Instituto de Magnetismo Aplicado (UCM), Unidad Asociada (CSIC), Spain ⁸The George J. Kostas Research Institute for Homeland Security, Northeastern University, USA

May 23, 2022

Motivation

Counterfeit Medicinal Supply Chains

\$870 Billion

Worldwide annual sale of counterfeit drugs and medical products **90%**

Increase in counterfeit medicine over 5 years

>500,000

Annual death toll caused by counterfeit drugs

Proposal: Remote Tagging Systems

This requires disambiguating configurations of materials given their measured properties.

Why not existing technologies?

Authentication systems \longleftrightarrow plethora of desirable properties \bigstar current technologies.

Magnetic Microwires (MWs) and their useful properties

Figure: SEM micrograph of glass-coated microwire.^a

Unique core-shell composite structure

- Core: soft magnetic (CoFe)SiB amorphous alloy
- Shell: pyrex glass cover \implies Bio-compatibile
- Diameter ${\sim}5{-}60$ microns

Promising functional response properties

- Ultra-soft ferromagnetism
- Unique magnetism-stress correlation
- Electromagnetic interactions

^aVázquez, M. (2007). Advanced Magnetic Microwires, Handbook of Magnetism and Advanced Magnetic Materials, J. Wiley Vol. 4, 2192-2222

MWs have sensitive S_{21} response in 1–5 GHz range

Figure: Schematic of experimental apparatus to measure the S_{21} response of arrays of MWs.

Configuration 1 Configuration 2 Scattering parameter (dB) $^{-1}$ -2 -3 Frequency (GHz)

Figure: The configurations are two parallel 4 cm wires with different separations between them.

- Tag/Configuration: the physical arrangement of the MWs on the measurement platform.
- $\bullet~S_{21}$ Response: the microwave radiation absorption profile exhibited by a configuration.

The Problem

Problem statement

Given a measurement function, generate *many* tags such that the corresponding responses can be disambiguated.

Difficulties

- The measurement function is:
 - defined by nature (we have no control it);
 - is complex (has no closed form equation).
- These two factors eliminate the use of most classical tools from computer science.

Solution (rest of the talk)

- We'll present our deep neural network model to solve this problem.
- Technical details for simulating the measurement function, a key part of our model.

Dispersive Autoassociative Neural Networks (DANN)

Figure: The Dispersive Autoassociative Neural Network architecture.

This needs the ability to simulate the measurement function, our focus for the rest of the talk.

Simulating the measurement function

Testing: Plot of actual responses

Figure: Actual Response (blue) for various unseen tag configurations

Frequency (GHz)

Testing: Plot of actual responses vs. our predictions

Figure: Actual Response (blue) and Predicted Response (orange) for various unseen tag configurations

Frequency (GHz)

Handling different environments

New environment

Handling different environments using fine tuning

New environment

Takeaways and next steps

Takeaways

- We are able to simulate the measurement function for magnetic microwires.
- Our model can adapt to changes in environment.
- Preliminary results: DANN gets 10-100x configurations compared to naive approaches.

Next steps

- \bullet Ongoing: DANN \longrightarrow generate a large set of MW tags.
- Open: Use other materials like DNA, fluorescent dyes, opto-chemical inks, etc.
- Open: Design a combination of materials that gives the best disambiguation ability.

Use the QR code to visit our group's website: https://disrpt.sites.northeastern.edu

We would like to acknowledge funding from Northeastern University's Intramural Tier 1 Award

