Realization Problems on Reachability Sequences COCOON 2020

Matthew Dippel, Ravi Sundaram, Akshar Varma

Northeastern University, Boston

August 30, 2020

The Reachability Realization Problem

2 Our Results

3 Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

The Reachability Realization Problem

2 Our Results

Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

The Reachability Realization Problem

- **Reachability value** of a node in a digraph: Number of nodes reachable from the given node.
- Reachability Sequence:

A sequence of all reachability values of nodes in the digraph.

- **Reachability Realization problem**: Is there a digraph with the given Reachability Sequence.
- We look at reachability realization for directed acyclic graphs (DAGs).
- Reminiscent of the Graph Realization problem on Degree Sequences [EG60, Hav55, Hak62].

Our results show an interesting interplay between the local property of degree and the global property of reachability.

The Reachability Realization Problem

2 Our Results

Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

Our Results

			Out-degree		
			Unbounded	Bounded	
In-Degree	Unbounded Bounded	(DAGs) (Trees)	Linear-time $(O(\log n), O(\log n))$	$(O(\log n), O(\log n))(O(\log n), O(\log n))$	

Linear-time Algorithm for DAGs

Theorem (DAG reachability)

Given a reachability sequence $\{r_1, r_2, ..., r_n\}$ in non-decreasing order there exists a DAG that realizes it iff $r_i \leq i$ for all *i*.

Proof.

- Only reach nodes with a strictly lower reachability value.
- **2** Only if: $r_i \leq i$ as at most i 1 other nodes have lower reachability.
- Solution For all *i*, connect node *i* to the first $r_i 1$ nodes.
- Reachability is exactly r_i as we connect to all children of a node before connecting to a node.

The Reachability Realization Problem

2 Our Results

3 Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

The Reachability Realization Problem

2 Our Results

3

Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

Notion of Bicriteria Approximation

• δ -Degree consistency:

Graph G is δ -degree consistent with graph H if for all nodes i:

$$I_G(i) \in \left[I_H(i), (1+\delta) \cdot I_H(i)\right]$$
 and $O_G(i) \in \left[O_H(i), (1+\delta) \cdot O_H(i)\right]$

• *p*-reachability consistency:

A tree G is ρ -reachability consistent to sequence r_i if for all nodes *i*:

$$r_i \leq 1 + \sum_{j \in C(i)} a_j \leq \rho \cdot r_i$$

where a_i are the reachability labels in the approximate solution.

• $G(\rho, \delta)$ -approximates graph H if it is ρ -reachability consistent and δ -degree consistent with H.

The Reachability Realization Problem

2 Our Results

3

Approximation Algorithms

• Notion of Bicriteria Approximation

• Linear Program Randomized Rounding

• Deterministic Sieving using Hurkens-Schrijver (DSHS)

Linear Program Randomized Rounding

Theorem (LPRR)

Given a reachability sequence for a full k-ary tree, T, we can construct a DAG that is an $(O(\log n), O(\log n))$ -approximation to T in $O(n^{\omega + \frac{1}{18}})$ -time.

Let f_{ij} be the flow from node *i* to node *j*.

min 1

s. t.
$$\sum_{j} f_{ji} = I(i) \quad \forall i,$$
 In-degree requirement
$$\sum_{j} f_{ij} = O_G(i) \quad \forall i,$$
 Out-degree requirement
$$r_i = 1 + \sum_{j} f_{ij} \cdot r_j \quad \forall i,$$
 Reachability consistency
$$f_{ij} = 0 \quad \forall i, j \text{ s.t. } r_i \leq r_j$$
 Acyclicity

Linear Program Randomized Rounding (Cont.)

- Round each edge ij to 1 w.p. f_{ij} independently 24 ln n times.
- Expected in-degree value $\mu_{in} = 24 \ln n \cdot I(i)$.
- By Chernoff bound, $\Pr\left[\text{In-degree not in } (1 \pm \frac{1}{2})\mu_{in}\right] \leq \frac{2}{n^2}$.
- A similar argument applies for out-degrees and reachability values.
- Union bound \implies Pr [Algorithm Failure] $\leq 3n \cdot \frac{2}{n^2} = o(1)$.

The Reachability Realization Problem

2 Our Results

Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

The Hurkens-Schrijver t-set packing algorithm

- Given a collection of sets with each set of cardinality *t*, the *t*-set packing problem is to find the largest *disjoint* sub-collection.
- This has an $n^{O(t^3)}$ -time $\frac{3}{t+3}$ approximation algorithm [FY14, HS89].
- Our algorithm, Deterministic Sieving using Hurkens-Schrijver (DSHS) has two phases, both of which solve (k + 1)-set packing problems.

Theorem (Deterministic Sieving using Hurkens-Schrijver)

Given a reachability sequence for a full k-ary tree, T, we can construct a DAG that is an $(O(\log n), O(\log n))$ -approximation to T in $n^{O(k^3)}$ -time.

Deterministic Sieving using Hurkens-Schrijver (DSHS)

Proof Sketch.

- 1. MatchChildren: ensures that every node's out-degree is satisfied.
 - Universe consisting of V and P_t , all nodes that need children.
 - Collection: Pick a node $i \in P_t$ and j_1, j_2, \ldots, j_k from V such that $r_i = 1 + r_{j_1} + r_{j_2} + \ldots + r_{j_k}$.
- 2. *MatchParent:* ensures that every node's in-degree is satisfied.
 - Universe consisting of all nodes V and C_t , the candidate nodes.
 - Collection: Pick a child node $i \in C_t$ and $j, j_1, j_2, \ldots, j_{k-1} \in V$ such that $r_j = 1 + r_i + r_{j_1} + r_{j_2} + \ldots + r_{j_{k-1}}$.

The Reachability Realization Problem

2 Our Results

Approximation Algorithms

- Notion of Bicriteria Approximation
- Linear Program Randomized Rounding
- Deterministic Sieving using Hurkens-Schrijver (DSHS)

Summary and Open Problems

			Out-degree		
			Unbounded	Bounded	
In-Degree	Unbounded Bounded	(DAGs) (Trees)	Linear-time $(O(\log n), O(\log n))$	$(O(\log n), O(\log n))(O(\log n), O(\log n))$	

- Derandomizing LPRR to reduce multi-edges in the solutions.
- Algorithms with good running time *and* simple solutions.
- If better approximation isn't possible, hardness of approximation.
- Graphs with cycles; our results are limited to acyclic graphs.

P Erdős and T Gallai.

Graphs with points of prescribed degrees.

Mat. Lapok, 11(264-274):132, 1960.

Martin Fürer and Huiwen Yu.

Approximating the *k*-set packing problem by local improvements.

In International Symposium on Combinatorial Optimization, pages 408–420. Springer, 2014.

S Louis Hakimi.

On realizability of a set of integers as degrees of the vertices of a linear graph I. *Journal of the Society for Industrial and Applied Mathematics*, 10(3):496–506, 1962.

Václav Havel.

A remark on the existence of finite graphs.

Casopis Pest. Mat, 80(477-480):1253, 1955.

Cor A. J. Hurkens and Alexander Schrijver.

On the size of systems of sets every t of which have an sdr, with an application to the worst-case ratio of heuristics for packing problems.

SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.