
Realization Problems on Reachability Sequences

Matthew Dippel1, Ravi Sundaram1, and Akshar Varma1

Northeastern University, Boston, USA
mdippel@ccs.neu.edu, r.sundaram@northeastern.edu, akshar@ccs.neu.edu

Abstract. The classical Erdös-Gallai theorem kicked off the study of
graph realizability by characterizing degree sequences. We extend this
line of research by investigating realizability of directed acyclic graphs
(DAGs) given both a local constraint via degree sequences and a global
constraint via a sequence of reachability values (number of nodes reach-
able from a given node). We show that, without degree constraints, DAG
reachability realization is solvable in linear time, whereas it is strongly
NP-complete given upper bounds on in-degree or out-degree. After defin-
ing a suitable notion of bicriteria approximation based on consistency, we
give two approximation algorithms achieving O(logn)-reachability con-
sistency and O(logn)-degree consistency; the first, randomized, uses LP
(Linear Program) rounding, while the second, deterministic, employs a
k-set packing heuristic. We end with two conjectures that we hope moti-
vate further study of realizability with reachability constraints.

Keywords: Reachability sequences · Graph realization · Bicriteria ap-
proximation · Strong NP-completeness

1 Introduction

Given a property P , the Graph Realization problem asks whether there exists a
graph that satisfies the property P . Starting with the Erdös-Gallai paper [12] on
degree sequences [20,23] many other properties have been considered in the liter-
ature ranging from eccentricities [7,26] to connectivity and flow [13,14]. The best
studied among these remain extensions of realization given degree sequences [1,5]
and variants focusing on different subclasses of graphs [8,21,27]. In addition to
their theoretical significance, realization questions occur naturally in numerous
application contexts, including network design [14], social networks [6,29], DNA
sequencing [30], enumerating chemical compounds [2], and phylogeny and evolu-
tionary tree reconstruction [19,31].

We consider the realization problem on digraphs: we are given as input a
sequence of tuples (ri, I(i),O(i)), where ri is the reachability value1, I(i) the
in-degree and O(i) the out-degree of each node i, 1 ≤ i ≤ n; and we wish to
determine the existence of a digraph such that each node has the prescribed
reachability value and the prescribed in-degree and out-degree. This formulation
extends the local properties considered by degree sequences to global properties
1 The reachability value of a node is the number of nodes reachable from that node.



2 M. Dippel, R. Sundaram and A. Varma

captured by the reachability sequence. Like all realization problems this has
connections to the graph isomorphism problem and graph canonization.

The study of reachability sequences has applications in several contexts. In
the scientific context, reachability and degree constraints can reflect measure-
ments obtained from naturally occurring networks with the aim being to gener-
ate a model that explains the measurements. Alternatively, from an engineering
perspective, the goal may be to find an implementation satisfying the desired
properties as specified by the reachability sequences. As an example scenario,
consider the spread of a malicious virus in a network. Perhaps the first step to
preventing the spread of this disease may be to understand the reach of infected
nodes (using reachability values) before controlling the spread by disconnecting
infected nodes from neighbors (using degree information). Alternatively, the goal
may be to construct resilient networks that restrict the spread of the virus.

1.1 Our Contributions

We characterize the complexity of the realizability of acyclic digraphs as sum-
marized in Table1. Instead of referring to bounded vs. unbounded in-degree, we
simply talk about trees vs. DAGs since the in-degree is bounded by one in trees
and they capture the essential behavior of bounded in-degree digraphs. This
usage makes the exposition of the hardness results more natural.

Table 1: Reachability realization for unbounded out-degree DAGs is linear time.
The other three cases are strongly NP-complete with bicriteria approximation
algorithms achieving an approximation factor of (O(log n), O(log n)).

Out-degree
Bounded Unbounded

In-Degree Bounded (Trees) (O(logn), O(logn)) (O(logn), O(logn))
Unbounded (DAGs) (O(logn), O(logn)) Linear-time

• In Section 3 we give linear time verifiable, necessary and sufficient conditions,
for realizing unbounded out-degree DAGs (Theorem 1).

• We define a notion of bicriteria approximation in Section 2 and give two
algorithms in Section 4 to solve the reachability realization problem, both
achieving an (O(log n), O(log n))-approximation.
− Theorem 3: Randomized algorithm using LP rounding that runs in O(nω)

time where ω is the matrix multiplication exponent.
− Theorem 5: Deterministic algorithm using k-set packing heuristics [15,24]

that runs in nO(k3) time.
• In Section 5 we prove the strong NP-completeness of reachability realiza-

tion when there are degree constraints. This includes one of our most techni-
cally involved results, a reduction from a generalized version of 3-Partition
to show the strong NP-completeness of reachability realization when both
in-degree and out-degree are bounded (Theorem 6). We also give simpler
reductions from 3-Partition for reachability realization when only one of
in-degree or out-degree is bounded (Theorems 7, 8).



Realization Problems on Reachability Sequences 3

Both approximation algorithms work in the presence of non-uniform degree
bounds, that is, each degree might be a different value. On the other hand, our
hardness results, except Theorem 8, prove that reachability realization problems
are strongly NP-complete even when the degree bounds are uniform. In particu-
lar, we note that the Theorems 6 and 7 which have uniform degree bounds rely
on having the in-degree bounded while in Theorem 8, where only the out-degree
is bounded, we are only able to show hardness in the non-uniform case.

2 Preliminaries

Let n denote the length of the given reachability sequence and V the set of nodes
in the corresponding graph, so that |V | = n. For node i in graph G we let C(i)
denote the set of children of i, i.e., C(i) = {j|(i, j) ∈ G}. The out-degree of i,
OG(i) is the number of its children, i.e., |C(i)|; the in-degree of node i in graph
G, IG(i) is the number of nodes with arcs directed into i. The reachability value of
node u is the number of nodes it can reach: ru = |{v : ∃ path from u to v ∈ G}|.
If the graph is a tree the reachability value ri can be recursively defined as
1 +

∑
j∈C(i) rj . A rooted tree with out-degree upper bounded by k is called a

k-ary tree otherwise they are general trees. Full trees are k-ary trees where
every out-degree is either k or 0. A complete k-ary tree is a k-ary tree with
every level except possibly the last filled and all nodes in the last level filled from
the left. The unique reachability sequence of such trees is denoted by T c

k (n).
We now define the appropriate notions for the purpose of approximation. We

say that a graph G is δ-in-degree consistent with graph H if they have the
same set of nodes and if for all nodes i the following holds: IH(i) ≤ IG(i) ≤
δ · IH(i). Here in-degree can be replaced with out-degree to get δ-out-degree
consistency. If a graph G is both in-degree and out-degree consistent with graph
H, then we say it is δ-degree-consistent. For ρ-reachability consistency we
generalize the idea of reachability to get a similar notion of approximation as
degree consistency. Given a tree we say that it is ρ-reachability consistent if for
all nodes i the following holds: ai ≤ 1 +

∑
j∈C(i) aj ≤ ρ · ai, where ai is the

reachability label on node i in the approximate solution. The above notion of
approximation can be extended to DAGs by replacing the inequality constraint
with ai ≤ OG(i) + maxj∈C(i) aj ≤ ρ · ai. Finally, we utilize the language of
bicriteria optimization (see [11,28]) to say that G (ρ, δ)-approximates graph
H if it is ρ-reachability consistent with the reachability sequence of H and it is
δ-degree consistent with H. This captures the intuition that G approximately
matches both the structure of G and its reachability sequence.

3 Linear time algorithm for DAGs

We show that there exist polynomial-time verifiable, necessary and sufficient con-
ditions that characterize reachability sequences of unbounded out-degree DAGs.
This is reminiscent of conditions for the reconstruction of graphs given degree



4 M. Dippel, R. Sundaram and A. Varma

sequences (see [12]). However it is in contrast to the hardness result of degree re-
alization for DAGs [9,22]. The inequalities in this section are deceptively simple
considering the hardness results we prove in Section 5. Readers fond of puzzles
are invited to prove the inequalities in Theorem 1 themselves before reading on.

Theorem 1 (DAG reachability). Given a sequence of natural numbers {r1, r2,
. . . , rn} in non-decreasing order there exists a DAG for which the given sequence
is the sequence of the reachability sizes of the DAG iff ri ≤ i for all i.

Proof. In a DAG, nodes can only reach nodes with a strictly lower reachability
otherwise its reachability would increase to a higher value causing a contradiction.
Since there are at most i− 1 nodes of lower reachability than ri, it can reach at
most i nodes including itself. Hence ri ≤ i is a necessary condition. Next, for all
i, connect i to the first ri−1 nodes. Observe that, excluding itself, i cannot reach
more than ri − 1 nodes since every node j it connects to can only connect to a
node k with k < j but i is already connected to k. Hence it can reach exactly ri
nodes and the inequality is also a sufficient condition. ut

4 Approximation Algorithms

We present two approximation algorithms that are ρ-reachability consistent and
δ-degree consistent with ρ = δ = O(log n) given the reachability sequence along
with the degree sequence. Thus the (ρ, δ)-approximation factor for our algorithms
comes out to be (O(log n), O(log n)). The randomized algorithm runs in O(nω)

time as detailed in Section 4.1 while the deterministic algorithm runs in nO(k3)

time as we detail in Section 4.2 . We compare further trade-offs between the
two algorithms in Section 4.3 including the motivation for the more technically
involved deterministic algorithm. While the exposition for both the algorithms
addresses details using the full k-ary tree case, the results extend to all acyclic
digraph cases in a straightforward manner.

4.1 LP based randomized rounding (LPRR) algorithm

The intuition behind the LPRR algorithm is to model the desired graph G as a
collection of flows. Between every pair of nodes ri and rj with ri > rj we assume
a flow fij on each edge out of i and into j. We have three constraints for each
node: the sum of flows into it is I(i) (in-degree requirement), the sum of flows
out of it is OG(i) (out-degree requirement), and that the reachability consistency
conditions are satisfied. Further, there cannot be an edge (fij must be 0) from
node i to node j if node i has a smaller reachability value than node j.

The existence of G guarantees that the LP is feasible. After solving for
a feasible set of fij values we round each edge ij to 1 with probability fij
independently 24 lnn times. Each time an edge is rounded to 1 it is added to the
solution (initialized to a graph with all nodes in V but no edges). We then argue
that the resulting structure satisfies the approximate reachability and degree
consistency requirements with high probability using concentration bounds.



Realization Problems on Reachability Sequences 5

min 1

s. t.
∑
j

fji = I(i) ∀i, In-degree requirement

∑
j

fij = OG(i) ∀i, Out-degree requirement

ri = 1 +
∑
j

fij · rj ∀i, Reachability consistency

fij = 0 ∀i, j s.t. ri ≤ rj Acyclicity

In particular, the following multiplicative form of the Chernoff bound is used.

Theorem 2. Let X =
∑n

i=1 Xi, where Xi are independent Bernoulli trials with
Pr [Xi = 1] = pi ∀ 1 ≤ i ≤ n and let µ = E [X] =

∑n
i=1 pi. Then, for 0 < ϵ < 1

Pr [|X − µ| ≥ ϵ] ≤ 2e−µϵ2/3 (1)

Theorem 3 (LPRR). Given a reachability sequence for a full k-ary tree, T ,
there exists a randomized O(nω)-time algorithm that constructs a DAG that is
an (O(log n), O(log n))-approximation to T .

Proof. Analysis of running time: Clearly the LP solver is the bottleneck in
this algorithm and the state of the art solver runs in O(nω) time [10] where ω is
the current best known exponent for matrix multiplication [25].
Proof of correctness: First, observe that vertex i has a total flow of I(i) coming
into it. So in one rounding the expected in-degree will be I(i) and after 24 lnn
roundings the expected in-degree value will be µ1 = 24 lnn · I(i). Invoking Cher-
noff bound with ϵ = 1/2 we get that the probability that the node’s in-degree
lies outside the range [µ1/2, 3µ1/2] is at most 2/n2. Similarly, we get the expected
out-degree to be µ2 = 24 lnn · OG(i) and the probability that the out-degree of
any node lies outside the range [µ2/2, 3µ2/2] is at most 2/n2. Further for any node
i, the reachability 1+

∑
j fij ·rj will have expected value µ3 = 24 lnn ·ri and the

probability that it lies outside the range [µ3/2, 3µ3/2] is at most 2/n2. Applying the
union bound over the 3n constraints in the LP, the probability that any of them
lies outside their prescribed range is at most 3n · 2

n2 = o(1) as n goes to infinity.
Thus with high probability after rounding, all of the quantities are within their
prescribed ranges, i.e., the degree and reachability consistency are guaranteed to
be within a logarithmic factor giving us the required (ρ, δ)-approximation. ut

4.2 k-set packing based deterministic algorithm

We give the intuition behind the algorithm, DSHS (Deterministic Sieving using
Hurkens-Schrijver) before presenting the technical details. DSHS runs in two
(essentially independent) sieving phases, each phase taking O(log n) rounds: The



6 M. Dippel, R. Sundaram and A. Varma

MatchChildren phase matches each node (other than the leaves) with a (valid)
set of children. The MatchParent phase matches each node (other than the root)
with a parent.2 Each phase starts with the entire set of candidate nodes and in
each round sets up a (k+1)-set packing problem. The problem of k-set packing
is to find the largest disjoint sub-collection of a given collection of sets each
of cardinality k. The (approximate) solution to this problem sieves or reduces
the candidate set by a constant factor, allowing each phase to finish in O(log n)
rounds. Putting the results from the two phases together we get the desired (ρ, δ)-
approximation factor. We use the following improvement of Hurkens-Schrijver’s
algorithm [24]. Note that a smaller ϵ can improve the approximation but comes
at the cost of a worse running time.

Theorem 4 (Theorem 5, Furer-Yu [15]; with ϵ = 1
3). The (k+1)-Set Pack-

ing problem can be approximated to a factor 3
k+3 in deterministic time nO(k3).

Theorem 5 (DSHS). Given a reachability sequence {r1, r2, . . . , rn} for a full
k-ary tree, T , there exists a deterministic nO(k3)-time algorithm that constructs
a DAG that is an (O(log n), O(log n))-approximation to T .

Proof. DSHS (Deterministic Sieving using Hurkens-Schrijver): We ini-
tialize using an empty DAG with all the n nodes and no edges.

Phase MatchChildren: Initialize C1 to be the set of all candidate nodes: nodes
other than leaves (which have value 1). In round t the universe consists of Ct

along with an entire set of V . Note that this has cardinality |Ct| + |V | and
is not the same as Ct ∪ V . We create a collection of all possible (k + 1)-sets
with each set consisting of an element i from Ct and k elements, j1, j2, . . . , jk
from V such that ri = 1 + rj1 + rj2 + . . . + rjk . Note that each (k + 1)-set is
a possible match for i to its children. The existence of T guarantees that the
optimal solution to this (k + 1)-Set Packing problem has size |Ct| – namely the
sub-collection consisting of each candidate node and its k children in T . Invoking
the Hurkens-Schrijver approximation algorithm from the above theorem we are
guaranteed to find a collection of sets that is at least (3/(k+2))·|Ct|. We use this
sub-collection of sets to augment our solution DAG with the corresponding arcs
from the node i to each of its children (j1, j2, . . . , jk) for each set. We also remove
the corresponding candidate nodes i from Ct to get Ct+1. Phase MatchChildren
ends when the candidate set Ct becomes empty.

Phase MatchParent: Initialize P1 to be the set of all candidate nodes: nodes
other than leaves. In round t the universe consists of Pt along with an entire set
of V . Note that this has cardinality |Pt| + |V | and is not the same as Pt ∪ V .
We create a collection of all possible (k + 1)-sets with each set consisting of
one element, i from Pt and k elements from V , of which one, j is the parent
and the remaining k − 1 nodes j1, j2, . . . , jk−1 are siblings of i such that rj =
1 + ri + rj1 + rj2 + . . . + rjk−1

. Note that each (k + 1)-set is a possible match
for i to its parent j. The existence of T guarantees that the optimal solution
to this (k + 1)-Set Packing problem has size |Pt| – namely the sub-collection
2 The root will have value n and leaves will have value 1.



Realization Problems on Reachability Sequences 7

consisting of each candidate node and its parent and siblings in T . Invoking
the Hurkens-Schrijver approximation algorithm from the above theorem we are
guaranteed to find a collection of sets that is at least (3/(k+2))·|Pt|. We use this
sub-collection of sets to augment our solution DAG with the corresponding arcs
from the node j to i and to each of its k−1 siblings for each set. We also remove
the corresponding candidate nodes, i from Pt to get Pt+1. Phase MatchParent
ends when the candidate set Pt becomes empty.
Analysis of running time: The bottleneck step is running the Hurkens-Schrijver
approximation algorithm for set-packing which takes nO(k3) time. Each of the
two phases takes a logarithmic number of rounds, log k+2

k−1
n to be precise, which

is absorbed into the total nO(k3)-time since the big-O is in the exponent.
Proof of correctness: Note that after phase MatchChildren every eligible node
is matched to exactly k children satisfying the reachability consistency condition
exactly. However, some nodes may not have parents and some may have too many
parents. Still every node is guaranteed to get at most one parent per round and
so no node has more than O(log n) parents at the end of Phase MatchChildren.
Similarly, after phase MatchParent every eligible node has at least one parent.
However some parents may get too many children. Yet, in each round a parent
gets at most k children and so no node gets more than O(k log n) children. Thus
at the end of the two phases we are guaranteed O(log n)-degree consistency. Now
observe that in each round of either phase, each node i either gets a valid set of k
children, that is children j1, j2, . . . jk such that ri = 1+rj1 +rj2 + . . .+rjk , or no
children at all; and we know that at the end of Phase MatchChildren every node
other than leaves gets at least one valid set of children. Hence, we are guaranteed
an O(log n)-reachability consistent solution. Thus the solution DAG at the end
of both phases is an (ρ, δ)-approximation to T . ut

4.3 Trade-offs between the two Approximation Algorithms

The major trade-off between the DSHS and LPRR algorithms is the running
time; while DSHS runs in nO(k3), the LPRR algorithm is independent of k and
runs in O(nω). Hence, unlike the deterministic algorithm, the randomized algo-
rithm can be used even when k is a function of n. We also note that LPRR can
be derandomized using the method of conditional probability [3]. While these
might suggest that the more complex and technically involved DSHS algorithm
is inferior, that is not the case. The LPRR algorithm results in more complex so-
lutions, in particular, LPRR may return digraphs with multi-edges while DSHS
is guaranteed to return simple digraphs. Also, the multi-edges provide a tighter
concentration of reachability consistency, albeit away from the reachability val-
ues, which may be a desirable property in applications where certainty is more
important than consistency. While that is an important application, it is more
common to require simple digraphs which the randomized algorithm cannot
guarantee. This motivates the more technically involved DSHS algorithm.



8 M. Dippel, R. Sundaram and A. Varma

5 Strong NP-completeness Results

When the in-degrees and/or the out-degrees are constrained by the degree se-
quence we prove strong NP-completeness [17] using pseudo-polynomial transfor-
mations [18]. The reductions embed an instance of problems like 3-Partition
between two consecutive levels of a tree. We first present the proof for the full
k-ary tree realization problem (all in-degrees 1 or 0 and all out-degrees k or 0) in
Section 5.1 which illustrates all the technicalities involved. We give a simpler re-
duction (in Section 5.2) to prove that realization of general trees (no out-degree
bound) is also strongly NP-complete. In Section 5.3 we give a reduction to prove
strong NP-completeness when there is only an out-degree bound.

5.1 Hardness of Realization for Full k-ary Trees

We prove hardness of the realization problem for full k-ary trees by reduction
from the K-PwT problem, which we prove to be strongly NP-complete in the ap-
pendix via a series of involved reductions. Since K-PwT is strongly NP-complete
we can reduce from a subclass, Πp, such that the largest number in the instance
is polynomially bounded, formally, Max[I] ≤ p(Length[I]), ∀I ∈ Πp.

Problem 1 (K-PwT). Given a set X with |X| = Km, K ≥ 2, sizes s : X 7→ Z+

and a target vector B = (b1, . . . , bm) ∈ Nm, can X be partitioned into m disjoint
sets A1, A2, . . . , Am, such that, |Ai| = k and

∑
a∈Ai

s(a) = bi, for 1 ≤ i ≤ m?

Theorem 6 (Full k-ary tree). It is strongly NP-complete to determine the
existence of a full k-ary tree whose reachability sequence equals a given sequence.

Proof. The problem is clearly in NP since a tree acts as a certificate. Set k = K
and define a number M which is a power of K, is much greater in magnitude
than any of the other numbers in the problem, and is polynomially bounded by
the maximum integer in the K-PwT instance (Eq. 2). We also define m′ and
m′′ such that m+m′ and m+m′′ are powers of K (Eq. 3).

M1 = max
(
{s(xi)|xi ∈ X} ∪ {bi|bi ∈ B}

)
;M2 = KmM1;M = K⌈logk M2⌉ (2)

m′ = Kd −Km, m′′ = Kd−1 −m = m′/K, where d = dlogK(Km)e (3)

We make the sequence S = C ∪ P ∪ G ∪D using four “component” sequences:
the “child component” C = C ′ ∪C ′′, the “parent component” P = P ′ ∪ P ′′, the
“ancestor component” G and the “descendant component” D.

The “child component” C is the union of the C ′ and C ′′ while the “parent
component” P is the union of the P ′ and P ′′. C ′ is in one-to-one correspondence
with the set X, using the sizes of elements from X with M added to them while
P ′ is in one-to-one-correspondence with B with changes to accommodate those
made to sizes of elements of X while making C ′. The sets C ′′ and P ′′ ensure
that the cardinality of C and P respectively are a power of K.

We construct the “ancestor component” in “levels”. The lowest level ld−2 is
constructed from P , by arbitrarily taking blocks of K elements, adding them all



Realization Problems on Reachability Sequences 9

up and incrementing the result by one. Formally, order the elements in P arbitrar-
ily as P1, P2, . . . , PKd−1 and let ld−2 = {ld−2,i | ld−2,i = 1+

∑K
j=1 P(i−1)K+j , 1 ≤

i ≤ Kd−2}. Other levels ld−i are constructed in a similarly from levels ld−i+1.
This is continued until l0 which has only one element since |P | is a power of
K and the size of each level above reduces by a factor of K. The element in l0
would be the largest number in the final instance. The “descendant component”
is constructed using reachability sequences of complete trees on the elements
ci ∈ C. For each such ci, we make a complete k-ary tree on ci nodes and use its
reachability sequence T c

k (ci). The descendant component is then D =
⋃

i T
c
k (ci).

Since each ci ∈ C has the form Kx+ 1, T c
k (ci) will also be full trees.

C ′ =
{
K(s(x) +M) + 1

∣∣x ∈ X
}
, C ′′ =

{ m′times︷ ︸︸ ︷
KM + 1, . . . , KM + 1

}
(4)

P ′ =
{
K(bi +KM + 1)

∣∣ bi ∈ B
}
, P ′′ =

{ m′′times︷ ︸︸ ︷
K2M +K, . . . , K2M +K)

}
(5)

G =

d−2⋃
i=0

li, where “levels”li are defined in text; D =

Kd⋃
i=1

T c
k (ci), ∀ci ∈ C (6)

Constructing S takes polynomial time as elements in P and C are derived di-
rectly from the K-PwT instance, there are a logarithmic number of levels each
computed in polynomial time, and the polynomial number of trees in D each be
computed in linear time. All that remains is to prove that the reduction is valid.

By construction, elements in G and P will form a partial full k-ary tree with
the elements in P as the “leaves”, elements in C and D will make a forest with
elements from C as roots of the trees in the forest, and C ′′ can be arbitrarily
partitioned to connect to P ′′ elements. If there is a partition of X, we can
partition C ′ accordingly to complete the tree.

To prove that a full k-ary tree implies a partition it is sufficient to prove that
in any tree the set of children of P ′ is equal to C ′, that is, the nodes of P ′ and
C ′ occur in consecutive levels in any tree. The node in l0 is the largest and will
necessarily have to be the root. This will be followed by the nodes from l1 since
no other nodes are large enough to reach those in l0 (given the out-degree bound
of k). Continuing the argument, li ∈ G will always appear in consecutive levels
in any tree and that P will follow below G. Since the in-degree is 1 no node from
p ∈ P will be a child of any p′ ∈ P . Further, nodes in D will all be less than
M/K in value and hence k of them will not be enough to reach nodes in P thus
necessitating that all children of nodes of P come from C. We note that nodes
from C ′ can not be children of nodes from P ′′ and so the set of children of P ′′

have to be C ′′. Since a value of the order of KM has to be reached for nodes
in P ′ and all nodes in C ′ are of the order of M , all the nodes from C ′ will be
used. Thus any tree will have nodes from P ′ and C ′ in consecutive levels and
therefore have a partition. This proves NP-completeness and as the maximum
integer used is polynomially bounded it also proves strong NP-completeness. ut



10 M. Dippel, R. Sundaram and A. Varma

5.2 Hardness of Realization for General Trees

Theorem 7 (General Trees). It is strongly NP-complete to realize a general
tree given a reachability sequence.

Proof. This problem is in NP as a tree acts as a certificate and all that remains
is give a reduction from 3-Partition.

Problem 2 (3-Partition). Given a set A, a target B and a size function s : A →
Z+ such that |A| = 3m and B/4 < s(ai) < B/2 ∀ai ∈ A, can A be partitioned
into m disjoint sets A1, A2, . . . , Am, such that for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B?

This problem is strongly NP-complete [16] which implies that even if the num-
bers in the instance are assumed to be polynomially bounded in the input length,
the problem is still NP-complete. We use such an instance of 3-Partition to
create a reachability sequence as follows. The notation [n] is used for the set
consisting of the first n natural numbers. The constructed instance is as follows:

S = {m(B + 1) + 1} ∪ {B + 1, . . . m times . . . , B + 1} ∪
( m⋃

i=1

[s(ai)]
)

This construction is clearly polynomial time, all that remains is to show that
this is valid reduction. In an abuse of notation the reachability size is often used
to refer to the node with that reachability size.

In any potential tree, then the m(B + 1) + 1 node is forced to be the root
as it cannot be the child of any node. Further, it will have m children, all the
B + 1 nodes as they cannot be the children of any other node. Considering the
remaining nodes in a bottom up fashion, we see that a fixed structure is enforced
on all these nodes due to the in-degree constraint in rooted trees. Any 2 node
can only have a 1 as it’s child, exhausting all 1’s and leaving only 2’s to be single
children of 3’s and only 3’s as children for 4’s and so on. By construction, there
are exactly as many nodes of size s−1 as there are nodes of size s for all s < B+1
and hence they all get exhausted. This enforces that each node labelled s(ai) is
a root of a path consisting of nodes with sub-tree sizes [s(ai)].

These restrictions are always present and a tree can be realized iff the paths
rooted at s(ai) can be correctly made children of the B+1 nodes. This happens
iff there is a partition of the 3-Partition instance; if there is no partition then
the paths cannot be joined to the partial tree above it to form a single tree. ut

5.3 Hardness of Realization with out-degree constraints

Theorem 8 (Bounded out-degree). It is strongly NP-complete to realize an
acyclic graph given a reachability sequence and out-degree constraints.

Proof. We reduce from 3-Partition, again using an instance with the maximum
number polynomially bounded in the length of the problem. Let si := s(ai)
and M := mB2 and note that M is much bigger than every number in the



Realization Problems on Reachability Sequences 11

3-Partition instance and that the
∑

i si = mB. Let the reachability sequence
S := Ss ∪Sb ∪Sa where Ss = {Msi}, Sb be a multiset with m copies of MB+1,
and S1 be a multiset of mB − |A| copies of 1. Let the out-degree constraint for
MB + 1 nodes be equal to three and for the si nodes be equal to si.

To achieve out-degree constraints, each of the si nodes will need to pick up
si−1 ones exhausting nodes in S1. For the MB+1 nodes to achieve their degree
requirement they’ll have to pick up exactly three nodes from Ss set which will
be possible iff there is a valid partition of the 3-Partition instance. ut

6 Conclusion

In this paper we initiate the study of the realization problem for DAGs and
rooted directed trees given a reachability sequence. We provide a linear time
algorithm for DAGs with unbounded out-degrees and show hardness results for
variants when we are also given a degree sequence bounding the in-degree and/or
out-degree. We define a notion of bicriteria approximation based on reachability
and degree consistency and give two (O(log n), O(log n))-approximation algo-
rithms for all of these problems. We conclude with two intriguing conjectures:

• Given a uniform out-degree bound and a reachability sequence the DAG
realizability problem is solvable in poly-time.

• The general digraph realizability problem given a reachability sequence (with
or without degree sequences) is strongly NP-complete.

References

1. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discrete Mathe-
matics 136(1-3), 3–20 (1994)

2. Akutsu, T., Nagamochi, H.: Comparison and enumeration of chemical graphs. Com-
putational and structural biotechnology journal 5(6), e201302004 (2013)

3. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Publishing, 4th edn.
(2016)

4. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for hamiltonian circuits
and matchings. Journal of Computer and system Sciences 18(2), 155–193 (1979)

5. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Realizability of graph specifi-
cations: Characterizations and algorithms. In: International Colloquium on Struc-
tural Information and Communication Complexity. pp. 3–13. Springer (2018)

6. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Graph profile realizations and
applications to social networks. In: International Workshop on Algorithms and
Computation. pp. 3–14. Springer (2019)

7. Behzad, M., Simpson, J.E.: Eccentric sequences and eccentric sets in graphs. Dis-
crete Mathematics 16(3), 187–193 (1976)

8. Berger, A.: A note on the characterization of digraphic sequences. Discrete Math-
ematics 314, 38–41 (2014)

9. Berger, A., Müller-Hannemann, M.: How to attack the np-complete dag realization
problem in practice. In: International Symposium on Experimental Algorithms. pp.
51–62. Springer (2012)



12 M. Dippel, R. Sundaram and A. Varma

10. Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix
multiplication time. In: Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing. pp. 938–942. ACM (2019)

11. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

12. Erdos, P., Gallai, T.: Graphs with points of prescribed degrees. Mat. Lapok 11(264-
274), 132 (1960)

13. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Jour-
nal on Discrete Mathematics 5(1), 25–53 (1992)

14. Frank, H., Chou, W.: Connectivity considerations in the design of survivable net-
works. IEEE Transactions on Circuit Theory 17(4), 486–490 (1970)

15. Fürer, M., Yu, H.: Approximating the k-set packing problem by local improve-
ments. In: International Symposium on Combinatorial Optimization. pp. 408–420.
Springer (2014)

16. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling un-
der resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

17. Garey, M.R., Johnson, D.S.: “Strong”NP-Completeness Results: Motivation, Ex-
amples, and Implications. Journal of the ACM (JACM) 25(3), 499–508 (1978)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory
of NP-completeness. WH Free. Co., San Fr (1979)

19. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systematic biology 52(5), 696–704 (2003)

20. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of
a linear graph I. Journal of the Society for Industrial and Applied Mathematics
10(3), 496–506 (1962)

21. Harary, F.: A survey of the reconstruction conjecture. In: Graphs and Combina-
torics, pp. 18–28. Springer (1974)

22. Hartung, S., Nichterlein, A.: Np-hardness and fixed-parameter tractability of realiz-
ing degree sequences with directed acyclic graphs. In: Conference on Computability
in Europe. pp. 283–292. Springer (2012)

23. Havel, V.: A remark on the existence of finite graphs. Casopis Pest. Mat 80(477-
480), 1253 (1955)

24. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an sdr, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics 2(1), 68–72 (1989)

25. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the
39th international symposium on symbolic and algebraic computation. pp. 296–303.
ACM (2014)

26. Lesniak, L.: Eccentric sequences in graphs. Periodica Mathematica Hungarica 6(4),
287–293 (1975)

27. Lovász, L.: A note on the line reconstruction problem. In: Classic Papers in Com-
binatorics, pp. 451–452. Springer (2009)

28. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. Journal of algorithms 28(1), 142–171
(1998)

29. Mihail, M., Vishnoi, N.K.: On generating graphs with prescribed vertex degrees for
complex network modeling. Position Paper, Approx. and Randomized Algorithms
for Communication Networks (ARACNE) 142 (2002)

30. Mossel, E., Ross, N.: Shotgun assembly of labeled graphs. IEEE Transactions on
Network Science and Engineering (2017)



Realization Problems on Reachability Sequences 13

31. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete
Applied Mathematics 69(1-2), 19–31 (1996)

A Proofs of strong NP-completeness for intermediate
problems

We now prove Strong NP-Completeness of problems used to prove Theorem 6.
Theorem 9 (Due to Garey and Johnson [18]). The NMTS problem stated
below is strongly NP complete:

Given disjoint sets X and Y each containing m elements, a size function
s : X ∪ Y 7→ Z+, and a target vector B = (b1, . . . , bm) ∈ Nm with positive
integer entries, can X∪Y be partitioned into m disjoint sets A1, A2, . . . , Am, each
containing exactly one element from each of X and Y , such that,

∑
a∈Ai

s(a) =
bi, for 1 ≤ i ≤ m?
NMTS (X,Y, s,B,m) refers to an instance of the NMTS problem characterized
by the sets X and Y , a size function s, the target vector B and the cardinality
of the target vector m.

A.1 NMTS-K is strongly NP-complete
The NMTS-K problem is proved strongly NP-complete by reduction from NMTS.
Theorem 10 (NMTS-K). Given K ≥ 2 disjoint sets Xi each containing m
elements, a size function s :

⋃
Xi 7→ Z+, and a target vector B = (b1, . . . , bm) ∈

Nm with positive integer entries, it is strongly NP-complete to partition
⋃
Xi into

m disjoint sets A1, A2, . . . , Am, each containing exactly one element from each
of Xi, such that,

∑
a∈Ai

s(a) = bi, for 1 ≤ i ≤ m.
NMTS-K (K,Xi, s, B,m) is an instance of the NMTS-K problem characterized
by the integer K, the K sets Xi, a size function s, the target vector B and the
cardinality of the target vector m.
Proof. The NMTS-K problem is in NP since given a candidate partition Ai, we
only need to verify that,

∑
a∈Ai

s(a) = bi, for 1 ≤ i ≤ m. We now construct
an instance NMTS-K(K,Xi, s

′, B′,m′) of NMTS-K problem from an instance
NMTS(X,Y, s,B,m) of the NMTS problem using the following transformation
for K ≥ 3 since for K = 2, the NMTS-K problem is the NMTS problem. Note
that this is a polynomial transformation since computing Equations 8, 9 and 10
can be done in polynomial time.

m′ = m, X1 = X, X2 = Y (7)
Xi are disjoint sets such that |Xi| = m′ for 3 ≤ i ≤ K (8)

s′(x) =

{
s(x) x ∈ X ∪ Y

1 otherwise
(9)

B′ = (b′1, b
′
2, . . . , b

′
m) where b′i = bi +K − 2, ∀bi ∈ B (10)



14 M. Dippel, R. Sundaram and A. Varma

We now prove that a YES instance of the NMTS-K problem occurs iff a YES
instance of NMTS occurs. Every partition for the NMTS problem is associated
with a partition for the NMTS-K problem. We denote the elements of Xi for i ≥
3 as xij , 1 ≤ j ≤ m and let Ai be the partition for the NMTS problem. The
associated partition for the NMTS-K problem A′

i, is defined as follows: A′
i =

Ai∪{xji|3 ≤ j ≤ K}. This association immediately provides us with the equality:∑
x∈A′

i
s′(x) = (

∑
x∈Ai

s(x)) + (K − 2) which we compare with the relation
b′i = bi+(K−2) from Eq. 10. We get that

∑
x∈A′

i
s′(x) = b′i and

∑
x∈Ai

s(x) = bi
either happen simultaneously or not at all. Thus, this association ensures that
this is a valid transformation.

The maximum number in the constructed instance is either the maximum
size from X and Y or K − 2 added to the maximum number from the target B;
all of which are polynomially bounded in the maximum integer in, and the length
of, the NMTS instance. This proves that NMTS-K is strongly NP-complete.

A.2 K-PwT is strongly NP-complete

The K-PwT problem is strongly NP-complete by reduction from the NMTS-K
problem. This problem can be regarded as a generalization of the 3-Partition
problem where we are looking for a partition into K-sets and there are multiple
targets to be reached instead of a single target.

Theorem 11 (K-PwT). Given a set X with |X| = Km, K ≥ 2, a size func-
tion s : X 7→ Z+ and a target vector B = (b1, . . . , bm) ∈ Nm with positive
integer entries, it is strongly NP-complete to partition X into m disjoint sets
A1, A2, . . . , Am, each containing exactly K elements, such that,

∑
a∈Ai

s(a) = bi,
for 1 ≤ i ≤ m.

K-PwT (K,X, s,B,m) is an instance of the K-PwT problem characterized by
the set X, an integer K, a size function s, the target vector B and the cardinality
of the target vector m.

Proof. The K-PwT problem is in NP since given a particular candidate partition
Ai, we only need to verify that,

∑
a∈Ai

s(a) = bi, for 1 ≤ i ≤ m. We construct
an instance K-PwT (K ′, X, s′, B′,m′) of K-PwT problem from an instance
NMTS-K (K,Xi, s, B,m) of the NMTS-K problem in the following manner.
M is polynomially bounded by the maximum integer in the NMTS-K instance.

M = KmM ′ where, M ′ = max
(
{s(xi)|xi ∈ Xi} ∪ {bi|bi ∈ B}

)
(11)

K ′ = K, X =
⋃

Xi (12)

For 1 ≤ i ≤ K and ∀xj ∈ Xi : s′(xj) = s(xj) +M i (13)

B′ = (b′1, b
′
2, . . . , b

′
m) where b′j = bj + σ, ∀bj ∈ B and σ =

K∑
i=1

M i (14)



Realization Problems on Reachability Sequences 15

The transformation is polynomial since equations 11 to 14 are polynomial-
time computable. Now we show that a YES instance of the K-PwT problem
occurs iff a YES instance of NMTS-K occurs. For ease of exposition, for the
rest of the proof, we write all the numbers in K-PwT (K ′, X, s′, B′,m′) in base
M . We make three remarks, the first: σ is a K + 1 digit number with a 1 in
all its digits except the rightmost or 0th digit (Eq. 14). The second, that every
number s′(x) has a 1 as its ith digit, s(x) in its rightmost digit3 and 0 elsewhere.
The third, a partition Aj for the NMTS-K instance (

⋃
Xi) is also a partition

for the K-PwT instance (X), irrespective of whether either of them solve the
respective problems or not. We’ll prove first that if Aj is a partition that solves
the NMTS-K problem, then it also solves the K-PwT problem.

Let Aj be a partition that solves the NMTS-K problem. Using the same
partition and Eq. 13 and 14, we get that

∑
x∈Aj

s′(x) =
∑

x∈Aj
s(x)+

∑K
i=1 M

i =∑
x∈Aj

s(x) + σ = bj + σ = b′j . This proves that if Aj solves the NMTS-K
problem, then it also solves the K-PwT problem.

To prove the converse, let Aj be a partition that solves the K-PwT prob-
lem. We know that

∑
x∈Aj

s′(x) = bj + σ, which implies that
∑

x∈Aj
s(x) +∑

i

∑
x∈Xi∩Aj

M i = bj+σ (from Eq. 13). This in turn implies that
∑

x∈Aj
s(x) =

bj and
∑

i

∑
x∈Xi∩Aj

M i = σ =
∑K

i=1 M
i since s(x) does not contribute to σ

(from the first two remarks and Eq. 14). Given
∑

i

∑
x∈Xi∩Aj

M i =
∑K

i=1 M
i,

equating the coefficients of the powers of M , we get that |Xi ∩ Aj | = 1, ∀i, j
which says that every set in the partition contains exactly one element from each
of the sets Xi. We already know from the earlier equations that

∑
x∈Aj

s(x) = bj .
Thus, the partition Aj is a solution to the NMTS-K problem as well.

The maximum integer in the K-PwT instance created by the transformation,
σ+max(b1, . . . , bm), is bounded (from Eq. 11) by a polynomial in the maximum
integer in, and the length of, the NMTS instance, which by the definition of
strong NP-completeness makes this is a pseudo-polynomial transformation. Thus,
K-PwT is strongly NP-complete.

3 Follows from Eq. 13 and M being greater than any number in the NMTS-K instance.


	Realization Problems on Reachability Sequences

