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Abstract— Space complexity is an important field of study,
to understand the theoretical memory requirements to solve
various problems. Such study is necessary due to the increasing
availability of large amounts of data, and hence problem sizes, to
know which questions can be answered within feasible memory
capabilities.

This project studies certain graph reachability problems within
the classes NL, L, UL, coUL, etc. Particularly, for 3D monotone
grid graphs, the reachability or st-connectivity problem is looked
at, that is whether there is a path from one vertex s to another
vertex t. This particular problem is of interest as variants of
it span across the space complexity spectrum. Bourke et al. [1]
show that the general variant is NL-Complete, hence linking it
to the L vs. NL question. We look at variants that are more
tractable, and show, using various reductions, that variants of
the 3D monotone grid graph reachability (3D-MGGR) problem
have some interesting properties.

We show that the 3D-MGGR with O(1) 2D layers is in
UL N coUL using logspace and AC° reductions. We also relax
one of the monotonicity conditions within layers and show that
problem to have the same complexity. On the other hand,
we prove that removing monotonicity between layers makes
the problem difficult, specifically we show that the 3D-MGGR
problem without monotonicity between layers is NL-Complete
even for the case of only 2 layers. To understand the nature
of other 3D-MGGR variants, we provide preliminary ideas on
defining a restricted class of graphs which would allow the
monotonicity conditions to be relaxed further.

These results provide an insight into the nature of complexity
classes within NL, and also into how well these problems can
characterize these complexity classes. Our reductions show that
nuanced variants of 3D-MGGR can have significantly distinct
complexities and are worth studying.

Index Terms— Space Complexity, 3D Monotone Grid Graph,
Reachability, Logspace reductions, AC° reductions

I. INTRODUCTION

The broad topic of this work is the field of computational
complexity theory, which is focused on understanding the
capabilities and limitations of computational models in terms
of the time and space required to solve various problems. The
study of the complexity of solving problems is a fundamental
part of theoretical computer science.

This field of study focuses on Turing machines, motivated
by the Church-Turing thesis which states, informally, that a
function is computable if and only if it can be computed using
Turing machines. The study of complexity of solving problems
is a fundamental part of theoretical computer science and it
seeks to better understand the nature of problems that can be

solved given certain resource constraints, be it the time allowed
or the space allowed to solve problems. Both time and space
complexity are of importance to understanding the nature of
problems; for designing faster and efficient algorithms.

Space complexity focuses on the amount of space that is
available to a Turing machine while solving a problem. With
the steady increase in the amount of Big Data, problem sizes
are also increasing rapidly. This calls for algorithms that use
optimal memory to solve problems and the study of space
complexity aims to better understand this from a complexity
theoretic perspective. Large problem sizes make it preferable
to keep the space allowed for computation to be asymptotically
lower than the size of the input. It would be quite inefficient
if it takes as much memory as the whole graph to answer a
question like deciding whether you can reach from vertex s
to vertex ¢ in a (directed) graph. Simply imagining the size of
the internet is enough to persuade one to search for algorithms
with space complexity that is asymptotically better than linear.
That provides some motivation for looking at problems that
can be solved using logarithmic space.

We focus on space complexity theoretic exploration of
reachability problems in graphs. Since the most difficult reach-
ability problem (directed graph reachability) is NL-Complete
all of our work is within the complexity class of NL. The
problem of reachability is interesting, as depending on the
class of graphs it showcases vastly different complexities and
their study aids in understanding the relationship between the
various space complexity classes. Graph reachability problems
have been used (like in [2]) to characterize, demarcate and
in general better understand complexity classes like NL,
coNL [3, 4] L [5], UL [6], etc.

We use results based on planar restrictions of graphs to
study the complexity of reachability problems in grid graphs,
particularly 3D grid graphs with monotonicity restrictions. We
provide reductions that show that variants of the problem
characterize quite different complexity classes, ranging from
UL N coUL to NL-Complete and are thus of interest.

The rest of this report is structured as follows. Section II
contains basic definitions and other preliminary results useful
in later sections. The literature survey done to learn the basics
of the field and to search for open problems is mentioned in
Section III. Section IV contains the reductions and all the main
results done during this bachelor’s thesis work. We list future
directions for work and concluding remarks in Section V.
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II. PRELIMINARIES

We first define strings and languages (from [7]), which are
used to model problems and problem instances.

Definition 1: Strings
A string over some alphabet A, is a finite ordered tuple of
elements from A. An alphabet is essentially a set and we
generally use the binary alphabet {0, 1}. O

Definition 2: Languages or Decision Problems
We associate a set Ly = {z|f(x) = 1} with any Boolean
(single bit output) function f and call the set a language or
a decision problem. The problem of computing the function
value f(x) given input string z, becomes a question of
deciding whether the string = belongs to the language, that
is, f(z) =11iff x € Ly. O

To compute the value of a function or equivalently decide
whether a string belongs to a set, we need a model of
computation. We define one such model, the Turing Machine,
as given in Arora and Barak’s book [7]. A Turing machine
is a model of computation that has one “input tape”, one'
“work tape” and one “output tape”. A tape is an infinite one-
dimensional line of cells, each of which can hold a symbol
from a finite set I" called the alphabet of the machine. There
is a tape head that can read or write contents to the tape one
cell at a time. The tape head of the input tape can only read
the contents of the input. Further, the machine’s computation
is divided into discrete steps at which all the fape heads can
move left or right by one cell.

The manner in which a Turing machines performs compu-
tations is based on its current state which belongs to a finite
set of states, denoted by (). The machine keeps a register
that stores the current state which is used to determine the
next state based on a transition function deciding whether to
read/write to cells, whether to move left/right or whether to
terminate the computation.

Definition 3: Turing Machines (definition from [7])
Formally, a Turing Machine (TM) M 1is described by a tuple
(T', @, 9) containing:

o A finite set I' of the symbols that M’s tapes can contain.
We assume that I' contains a designated “blank” symbol,
denoted [, a designated “start” symbol, denoted > and
the numbers 0 and 1. We call T' the alphabet of M.

« A finite set () of possible states M’s register can be in. We
assume that () contains a designated start state, denoted
@start and a designated halting state, denoted qpq¢-

e Afunction § : Q xI'* — Q xT*~1 x{L, S, R}* , where
k > 2, describing the rules M uses in performing each
step. This function is called the transition function of M.

Generally, we are concerned with decision problems and thus
only allow one bit to be written to the output tape. An input
string is accepted by the TM, when it outputs 1, denoting that
the string is in the language and analogously a TM rejects a
string by outputting 0, denoting that it is not a part of the
language. Symbolically, on input x, a TM M, is said to return
M (x) and if M(z) = 1 then the TM is said to accept the

'While multiple work tapes are also possible, they don’t provide any extra
computational power to the Turing Machine and we can assume that there is
only one work tape.

input string and it is said to reject the string if M (z) = 0. M
recognizes a language Ly if on input z, M(z) = f(z). O

These are also known as Deterministic Turing Machines
(DTMs) and there exists a model known as Non-deterministic
Turing Machines (NDTMs) which allows non-determinism in
the computations made by the TM.

Definition 4: Non-deterministic Turing Machines (defini-
tion from [7])

NDTMs are similar to DTMs, except that they contain two
transition functions ¢y and d; and a special accept state gqccept-
At each computation step, an NDTM M arbitrarily chooses
one of the transition functions and applies that to the current
state. An NDTM accepts an input if some sequence of these
choices results in M (x) = 1 and rejects if all choices result
in M(z)=0. ]

Let s:N— Nand L C {0,1}*

Definition 5: SPACE(s(n)) (definition from [7])

We say that L € SPACE(s(n)) if there is a constant ¢ and a
DTM M deciding L such that at most ¢ - s(n) locations on
M’s work tapes (excluding the input tape) are ever visited by
M’s head during its computation on every input of length n.
O

Definition 6: NSPACE(s(n)) (definition from [7])

We say that L € NSPACE(s(n)) if there is a constant ¢ and
a NDTM M deciding L such that for inputs of length n, at
most ¢ - s(n) locations on M’s work tapes are ever visited,
regardless of its non-deterministic choices. (]

Using the definitions of SPACE and NSPACE, we define
complexity classes that contain problems that can all be solved
using some limited amount of resources. In the case of space
complexity we are interested in classes that require logarithmic
resources for its work tapes. Thus, we define the following two
complexity classes.

Definition 7: L and NL (definition from [7])

These complexity classes are defined on the basis of the space
they use for a problem of size n, as follows:

L = SPACE(log(n))

NL = NSPACE((log(n)) O

Definition 8: UL
UL is defined similar to NL, except that instead of the Turing
Machine accepting on at least one computation path, it should
accept on exactly one computation path for a language to be
in UL. O

Definition 9: coUL
A problem is in coUL if and only if its complement is in UL.
Mathematically, coUL = {L|L € UL} O

We now define logspace reductions and NL-Completeness
as given in [7].

Definition 10: Logspace Reduction (definition from [7])
A function f : {0,1}* — {0,1}* is implicitly logspace
computable, if f is polynomially bounded (i.e., there’s some c
such that | f(x)| < |z|° for every = € {0, 1}) and the languages

L= {(z @) f(@)i = 1} and Ly = {(z,i)|i < |f(2)} are in

A language B is logspace reducible to language C, denoted
B <; C, if there is a function f : {0,1}* — {0,1}* that is
implicitly logspace computable and = € B iff f(z) € C for
every x € {0,1}*. O
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Definition 11: NL-Completeness (definition from [7])

A language C is NL-Complete is it is in NL and for every
BeNL, B<; C. ]

Definition 12: First order projections (definition from [8],

based on [9])
These are reductions which are computed by circuits having
no gates (except possibly NOT gates), effectively making each
output bit either a copy (or a negated copy) of a bit of the input
or a constant. (]

Definition 13: Circuits, their sizes, and their depths (def-

inition based on [7, 10])
A circuit is a directed acyclic graph that with some input gates,
output gates and intermediate gates. Each intermediate gate
is a Boolean function (AND, OR, NOT, etc.) and can take
in any number of incoming edges called inputs (except for
unary gates like NOT), and output (outgoing edge) a single
bit computing the value of the Boolean function.

The size of a circuit is the number of vertices in the Directed
Acyclic Graph. The depth of the circuit is the longest path
from an input node to an output node. (]

Definition 14: ACP° reductions (definition based on [7, 10])
These are reductions computable by an AC® circuit, which
have constant depth, polynomial size, and unbounded fan-in
for AND and OR gates with NOT gates only at the input. [

Definition 15: Reachability or st-connectivity
Given a graph G, a source vertex s and a target vertex t,
the reachability problem or the st-connectivity problem is the
problem of deciding whether there exists a path from s to ¢
in the graph G. (]

Definition 16: Grid Graphs (definition based on [8])
Class of graphs where each vertex can be labeled with integer
valued coordinates (both 2D and 3D). Further, edges in such
graphs can only exist between neighboring grid points. (]

Definition 17: Monotonicity (based on definition from [1])
Grid Graphs are said to have monotonicity along some axis
iff all edges along that axis are in one direction; i.e. if all
edges along the X axis are in the positive direction, then it
has monotonicity in the X direction. A grid graph having
monotonicity in all directions is a monotone grid graph. [

Definition 18: Layered Grid Graphs (based on definition
from [8])

A grid graph that has monotonicity in some of its direction is
called a layered grid graph. (]

Definition 19: Thickness of graphs (definition from [1],
based on [11])

The thickness of a graph G is the minimal number of planar
subgraphs whose union is G. (I

Definition 20: Geometric thickness of graphs (definition

from [1], based on [12, 13])
The geometric thickness of a graph G is defined as the minimal
number k such that we can assign planar point locations to
the vertices of (G, represent each edge as a line segment, and
assign each edge to one of k transparencies so that no two
line segments cross in any one transparency.

The difference between thickness and geometric thickness
is that geometric thickness requires that all vertex placements
be consistent across all transparencies. (]

III. INITIAL LITERATURE SURVEY

A thorough understanding of Turing machines and related
concepts had to first be acquired due to a lack of any previous
formal training in Complexity Theory. Sanjeev Arora and
Boaz Barak’s book, Computational Complexity: A modern
approach [7] was used as a textbook to study all the basics
required to start working on problems.

The study started by understanding the basics of Turing ma-
chines, the relation between strings and machines, simulation
of Turing machines using a Universal Turing machine and
Uncomputability, among other things. This was followed by
various time complexity related complexity classes including
P, NP, coNP, EXP, NEXP, coEXP, etc. Relations between
these classes were also studied along with the concept of
reductions and the locality of computations, using, among oth-
ers, the Cook-Levin theorem. The concept of diagonalization
was studied next and the Time hierarchy theorem, the Non-
deterministic Time hierarchy theorem, Ladner’s theorem and
Oracle machines were looked at.

Having received a broad view of the basics related to the
time complexity of Turing machines, space complexity was
studied with numerous theorems for space complexity being
looked at, analogous to those for time complexity. PSPACE-
completeness, NL-Completeness, etc. were looked at and a
thorough understanding of these concepts was acquired via
solving exercise problems.

With the required background, other literature was used
to find open problems to be focused on. This was primarily
done using the PhD thesis of Sambuddha Roy [8], particu-
larly focusing on the complexity theoretic aspects of planar
restrictions of graphs. The problems studied in the thesis are
those related to subclasses of planar graphs and particularly,
the problem of graph reachability is looked at. Such study
is motivated by a wish to improve the understanding of the
relation between the complexity classes of L and NL, and of
intermediate and lower complexity classes. The thesis provided
an introduction to the Grid Graph Reachability problem and
variants. The proofs in the thesis provided insight into the
techniques commonly used for understanding such problems.

Further literature survey was done to find open variants
of the reachability problem in grid graphs. Bourke et al. [1]
was one paper which dealt with reachability for 3D grid
graphs. They prove the general 3D-MGGR problem to be NL-
Complete which motivated looking at some simpler variants
of the problem.

In the periods between searching for open problems, some
background was gained in the related fields of circuit com-
plexity and basics of first-order projections; all of which
were helpful during later reductions. This background work
included reading the initial parts of Vollmer’s book, Intro-
duction to Circuit Complexity [10], and Immerman’s book,
Descriptive Complexity [9], of which the latter was used
as a reference to understand some of the proofs used in
Roy’s thesis. Barrington’s works [14, 15] also came up while
searching for problems related to those mentioned in Roy’s
thesis and further motivated looking at problems related to
grid graph reachability.
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IV. 3D-MGGR AND VARIANTS

A three-dimensional grid graph is a directed graph whose
vertices belong to [n] x [n] X [n], with edges connecting only
immediate neighboring grid points. We identify positive X and
Y directions with the north and east cardinal directions and
negative X and Y directions with south and west cardinal
directions respectively. An edge in the positive Z direction
((i,5,k) — (4,j,k + 1)) is an upward edge and an edge in
the negative Z direction is a downward edge. We call a three-
dimensional grid graph monotone (3D-MGG) if there are only
north, east and upward edges.

Bourke et al. refer to the st-connectivity problem (or the
reachability problem) for such a graph as 3D-MGGR and
show that it is NL-Complete [1]. We look at some variants of
this problem and use reductions to determine their complexity.

A. 3D-MGGRyy € UL N coUL

We modify the 3D-MGGR problem by restricting the
number of XY-planes (called layers) in the 3D grid to be
some k = O(1), and give a many-one logspace reduction
from this restricted version of the 3D-MGGR problem to
Directed Planar Reachability (DPR) problem. Since Bourke
et al. prove that DPR is in UL N coUL, this reduction shows
that 3D-MGGR with O(1) layers (3D-MGGR(y)) is also
in UL N coUL. Further, our reduction followed by Roy’s
logspace reduction from DPR to 2D GGR (Section 4.4 of
his thesis [8]), suffices to give a logspace reduction from the
3D-MGGRg(1) problem to the 2D GGR problem.

The main idea in the reduction is to note that for a path from
s to t to exist, there must be a sequence of upward edges (often
referred to simply as “sequence”) through which the path goes
from layer to layer on the way from s to ¢. Between two
such upward edges, the path needs to find a subpath within a
particular layer. The reduction creates a graph which looks at
all possible sequences of upward edges and within each such
sequence looks at whether there is a subpath for each required
layer.

Theorem I: 3D-MGGR (1) many-one logspace reduces to
DPR. Therefore, 3D-MGGR (1) € UL N coUL.

Proof: Since we only have O(1) layers, the grid di-
mensions are m X m X k, where & = O(1) is a constant
independent of the problem size. Vertices in each layer belong
to an m x m sized 2D grid. Since we are concerned with
only the st-connectivity problem in monotone graphs, we can
trivially restrict s and ¢ to lie on diagonally opposite corners
of the 3D grid by neglecting the remaining part of the grid.
For each layer, we make a set containing all the vertices from
that layer which have edges that leave the layer (going upward
in monotone graphs) to get the sets Ly, Lo, ..., Ly, each of
which is ordered by first comparing the row number and then
the column number of the elements. Let [q, lo, ..., I be the
cardinality of these sets, with [; < m?, Vi € [k].

Any path from s to ¢ will use some sequence of upward
edges and we let the total number of possible choices for
such sequences be a = Hle I;. Given the i*" sequence, we
label the vertices incident on the upward edges as ¢; ; and
84,541 when the edge goes from layer j to layer j + 1 (for

completeness we label s as s; 1 and ¢ as ¢; ;). The s; ; vertices
act as sources and ¢; ; act as targets within the layer j. To see
whether the i sequence can be used for the overall path, we
check if there is some subpath from s; ; to ¢; ; (denoted by
t;,; ~ 8;,;) for all possible layers j. For a given i, this can
symbolically be denoted as determining whether the Boolean
expression Vj € [k] 3(t;; ~» s;,) returns true or false.
Similarly, the overall condition can be expressed simply as
determining whether 3¢ € [a] Vj € [k] such that 3(¢; ; ~
si,;) returns true or false. The condition for a given sequence
is realized in graphs by making an “AND” gadget over the
subpaths within each layer. The final condition is realized by
making a graph which acts as an “OR” gadget over all possible
sequences.

The reduction takes a monotone 3D grid graph and produces
a planar graph by creating these “AND” and “OR” gadgets.
We make “AND” gadgets for each sequence, one-by-one,
keeping track of the current sequence of upward edges by
representing each sequence as a k-dimensional vector which
in its i*" element keeps track of which element of L; is being
used as the starting vertex for the upward edge. We start at
the lexicographically smallest such vector and simply cycle
through all valid vectors. First we create s’ and ¢’ which
become the new source and target vertices respectively for
the DPR problem. For each sequence, we use copies of some
vertices from the 3D grid to make our planar graph and the
selection of vertices is done on the basis of the upward edges
used in that particular sequence and hence on the basis of
vertices of the form s; ; and ¢; ;. We use the labels of the
vertices from the 3D grid when we actually mean their copies.

For each vector, we start by making an edge between s’ and
a copy of s;1 and between a copy of t; 5, and t'. For every
pair s; ; and t; ; in that sequence, the rectangular grid (of the
jt" layer) defined by these two vertices is replicated and each
rectangle is connected to the next one using (copies of) the
corresponding upward edges (¢;; to s; ;41). This completes
the “AND” gadget for that vector; there will be a path from s; 1
to ¢; 5 only if there are subpaths within all the layers. Doing
this for each sequence and asking the reachability question for
s" and t' completes the “OR” construction as there is a path
from s’ to ¢’ if and only if there is a path through any one of
the sequences.

Since k = O(1), the k-dimensional vectors can be stored
using space logarithmic in n and can be used to keep track of
which sequence’s graph is being made at the moment. The
additional information needed to create any of the “AND”
gadgets also uses only O(log(n)) space and hence the overall
reduction is easily seen to be a many-one logspace reduction.

|

Corollary 1: 3D-MGGRgy) is also reducible to DPR with
relaxed monotonicity conditions such that only one of the
north-south and east-west directions is monotonous at a time.
We denote such problems as layered grid graph reacha-
bility problems and denote the existence of monotonicity
in a particular direction using subscripts. 3D-LyyGGRo(1)
(monotonous in North and Upward directions) and 3D-
LruGGRp(1) (monotonous in East and Upward directions)
both reduce to DPR via a slightly modified reduction.
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Proof: 1If the north-south direction (the east-west direc-
tion) has monotonicity, then instead of a rectangle defined by
the s; ; and t; ; vertices, we use the part of the grid between
the rows (the columns) containing those vertices and include
all the columns (the rows) until the boundary of the 2D grid.
The underlying concept of the reduction stays the same, it is
merely the construction of the “AND” gadget that gets slightly
modified with the rest of the reduction carrying forward almost
exactly as before. ]

B. 3D-MGGRg(;) <A¢” DPR

We now give a reduction from 3D-MGGR (1) to DPR that
can be computed using an AC? circuit. In an AC° reduction,
we are allowed to use polynomial sized, O(1) depth circuits
using unbounded fan-in AND and OR gates (only inputs can
have NOT gates). This reduction uses less resources than the
logspace reduction and is hence a “weaker” reduction, which
in turn makes our result slightly “stronger”.

Before we prove the theorem, we note a few functions
that are computable using an AC? circuit. Since we have
AND and OR gates, slightly more complex Boolean functions,
like XOR, are possible using constant depth circuits. These
functions can then be combined to compare two integers and
determine whether they are equal or not. Checking inequalities
(<,>, <, >) requires a slightly more complex circuit? but that
is also possible due to the unbounded nature of the fan-in of
AC?O circuit gates. We can also compute the sum and difference
of two integers. One additional function that is used in our
reduction and can be computed by an ACP® circuit (using a
combination of the previous functions mentioned) is sorting
of a constant number of integers.

Theorem 2: 3D-MGGR (1) AC? reduces to DPR.

Proof: We construct an instance of DPR similar to that
in the proof of Theorem 1. Instead of enumerating all valid
sequence of upward edges using k counters to store a k-
dimensional vector, we use a flag for all possible vectors to see
if it is a valid one. For each valid vector, we use an AC? circuit
to make copies of vertices and then complete the necessary
edges to get the “AND” gadget as before.

We have the instance of 3D-MGGR(;) consisting of the
graph G = (V, E), the source vertex s and the target vertex
t. Each vertex in V' is labeled using a 3-tuple containing the
X, Y, and Z coordinates of the grid point where the vertex
lies. Each edge is labeled using a pair of such 3-tuples. The
instance of DPR will consist of a graph H = (V', E’), a new
source vertex s’ and a new target vertex t’. Vertices in V' are
copies of the original vertex labeled using the k-dimensional
vector defining the sequence that the particular vertex belongs
to (which copy is it), and the 3-tuple providing the original
position of the vertex. Edges are labeled using the pair of
labels of the vertices it belongs to, and these are exactly as
those present in the reduction in the proof of Theorem 1.

We use a small circuit (referred to here as a “flag” circuit)
to check for each vertex v; € V, if it has an upward edge. If

2For example, for checking whether a < b, we use the following circuit. For
each bit a;, check if all bits of higher significance are equal to corresponding
bits of b, and if they are, then check if a; is a O while b; is a 1. If the overall
result for any bit is 1, then a < b.

it has, then the “flag” circuit for v; outputs 1, else it outputs
0. The various“flag” circuit’s output gates are labeled using
the labels of the corresponding vertex. These outputs act as
inputs to “valid vector” circuits which output whether the set
of input vertices are a valid sequence of upward edges. The
input to the “valid vector” circuits are made by making all
possible choices of k “flag” circuits out of all the km? “flag”
circuits. Thus there are (k’,’:z) “valid vector” circuits.

Each “valid vector” circuit checks if the set of input vertices
form a valid sequence of upward edges. The first check is
whether s and t are both a part of the set. Since there are
exactly k inputs, we can easily make the rest of the checks in
ACP. For the vector to be a valid choice, it should be reachable
by the vertex before it. This is checked by first sorting all the
vertices (first on Z coordinate, then Y, then X) which happens
in AC? since k is constant. Then for each vertex we check
if the next vertex belongs to the next level and if the X and
Y coordinates of the next vertex are at least as much as that
of the current vertex. If all these checks pass, then the vector
represents a valid sequence of upward edges and the “valid
vector” circuit outputs a 1, else it outputs 0.

Once we have all the valid vectors, we go on to make
copies of the vertices and the required edges. For each vector,
we make all the vertices as we did in the reduction for
Theorem 1. These vertices are labeled with the k-dimensional
vector followed by the 3-tuple that originally represented it in
G. We then simply check if a particular edge must exist or
not. For all edges that might start at s’, we only allow those
that go to s; 1, similarly we only allow edges to go to ¢’ if
they start at ¢; 3, and do this for all possible vectors 7. All
edges from t; ; for j < k must go to s; j+1. All edges that
are part of the rectangular subgrid of a layer are checked on
the basis of the vector label, using circuits to check whether
vertices are within the rectangular subgrid; this requires simple
inequalities to be checked.

Each of these are simple checks that can all be done using
ACO circuits. Since all components of the construction can
be done in ACP, the overall construction can be done in
ACO®. Thus, H is constructed similar to the construction in
the proof of Theorem 1. Since we have already shown how
this construction preserves reachability, this reduction is an
AC° reduction and thus 3D-MGGR (1) <AC® DPR.

|

C. 3D-LygGGRy is NL-Complete

Now we show that if we remove the monotonicity con-
ditions only in the Z direction, even then the reachability
problem becomes NL-Complete. For this we provide a many-
one logspace reduction from a known NL-Complete problem
to 3D-LyrGGR2 (layered along North and East directions)
with monotonicity only in X and Y directions.

Theorem 3: (Due to Bourke et al. [1])

The st-connectivity problem for (geometric) thickness-two
graphs is NL-Complete. Moreover, each transparency is a
monotone grid graph. |

Theorem 4: The 3D-LygpGGR2 problem with monotonic-
ity only in the X and Y directions is NL-Complete.
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Proof: We know that the reachability problem for geo-
metric thickness two graphs with each transparency being a
monotone grid graph, is NL-Complete. We take an arbitrary
instance of such a problem, say graph G along with source
vertex s and target vertex ¢ and construct a corresponding
instance of 3D-LygpGGR,, say graph H, with new source
vertex s’ and new target vertex t’.

Let the vertex set of G be V and the edges in the two
transparencies be £, and Ey. We know that V' can be arranged
into a grid and thus each vertex has a label of the form (3, j)
where ¢ denotes its position along the X axis and j denotes the
position along the Y axis. The edges in both F; and E5 are
monotone in nature due to which we can assume that s and ¢
are on diagonally opposite ends of the grid. To construct H,
we will make two copies of all vertices and put one each in the
two XY-plane layers of H. The edges from a transparency get
mapped to the copies of vertices in the corresponding layer.
Finally, we connect all pairs of copies of vertices (Vu € V,
copy of vertex u from layer 1 with the corresponding copy in
layer 2) with bidirectional edges in the Z direction.

We define x(u) to be a function that returns the X coordinate
of a vertex u and similarly y(u) to be a function that returns the
Y coordinate. Using these we proceed to define our instance
of H. Let V' be the vertex set of H, we define V' =V, UV,
where V) and V5, are given by Equation 1 and Equation 2
respectively, and correspond to the vertices in layer one and
layer two respectively. Similarly, we define the edge set of I
as B/ = E{ U E, U Es where Ey and E» contain the edges
from layer 1 and layer 2 respectively (Equations 3 and 4) and
E5 has all the bidirectional edges in the Z direction between
corresponding vertices (Equation 5). Finally, we assign® s’ to
be the copy of s in V; and t’ to be the copy of ¢ in V5.

i= {(x(u)7 y(u), 1) ‘ Yu € V} (1)
V= {(glc(u)7 y(u), 2) | Yu € V} )
Bl = {((@(w), y(w), 1), @), y@), D) | 3

Y(u, v €E1}
{((x(u) y(w), 2), (@(v), y(),
2

E3={((r(u),y(U) )7( ( 1), y(w),

Any path from s to ¢t will use some sequence of edges
from FE and these will result in some sequence of chosen
transparencies throughout the path. Since we are mapping all
the edges within a transparency into edges in different layers,
to replicate the same path, we only need a way to move from
one layer to another. This is provided by the bidirectional
edges defined in E5, which allows us to move from a vertex
in one layer to the corresponding vertex in the other layer.

Thus, our mapping of vertices and the bidirectional edges
in the instance H suffices to retain the reachability between

By

) @

2)) [VueV} (5

3Due to the bidirectional edges between the two layers, assigning the source
and target vertices to either of the layers can be done without any loss of
generality.

vertices from the instance G. Although every edge from
the original path in G may need a corresponding additional
bidirectional edge in the path in H, a maximum of twice the
original number of edges is enough.

Our reduction is clearly possible in logspace and we also
showed that it preserves reachability. Thus we have shown that
3D-LyrGGRy is NL-Complete. |

We note that the reduction mentioned above is actually a
first order projection. In our reduction we are copying edges
(mapping vertices and edges from transparencies to layers) or
we are using constants (the bidirectional edges between all
pairs), both of which are allowed in first order projections.

D. Further relaxation of restrictions and some open problems

We have seen that for monotone 3D grid graphs, restricting
the number of layers to O(1) allows us to answer the reach-
ability question in UL N coUL. At the same time, without
monotonicity in the Z direction, we get an NL-Complete
problem even after restricting the number of layers to 2. In this
section we discuss some preliminary ideas regarding variants
that allow us to further restrict monotonicity, albeit at the cost
of certain other restrictions.

Most of these restrictions are motivated by the idea of an
origami like unfolding of the 3D grid graphs. This can be
visualized for two layers by imagining a folded sheet of paper.
A folded sheet of paper, models a 3D grid graph with two
layers. On unfolding it at the fold, we see that edges that were
going upward/downwards are now reduced to those within
the plane and hence the 3D grid graph reachability problem
gets reduced to a planar reachability problem. One can easily
imagine numerous extensions to this for graphs which have
monotonicity in, say the X direction. For example, if all edges
in the Z direction from one layer, lie on one column, and
these columns are all in increasing order as we go up the
layers, then we can perform a similar unfolding operation on
such graphs to again get a planar reachability problem. This
particular structure can be visualized by imaging Japanese
handheld fans [16] and how they unfold.

Some interesting open problems exist here, regarding how
to mathematically define more general classes which allow
some such manipulations to be performed to achieve easy
reductions. More work needs to be done to see how these
ideas can be extended and/or combined to obtain a much
broader class of graphs which may allow us to remove the
restriction on the number of layers. For example, the Japanese
fans structure can be reduced to planar reachability even if
the number of layers is unrestricted. These could be combined
with ideas for classes of graphs which allow us to completely
do away with most monotonicity conditions. The first example
of a folded sheet of paper is a simple example of such classes.

Studying such methods to relax restrictions, both on the
number of layers as well as on the monotonicity would allow
us to better understand the nature of the reachability problem
which in turn sheds light on the relations between various
complexity classes.
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V. CONCLUDING REMARKS AND POSSIBLE DIRECTIONS
FOR FUTURE WORK

This project was aimed at studying problems from a space
complexity perspective. The primary problem looked at was
the reachability problem, which has varied complexities de-
pending on the class of graphs that are looked at. The focus of
this project was on grid graphs, particularly on 3D grid graphs;
with an aim of better understanding the space complexity
landscape within NL.

We looked at variants of the NL-Complete 3D-MGGR, in-
cluding 3D-MGGR(1) and 3D-LygGGR,. These problems
are of interest as the general 3D-MGGR was shown to be NL-
Complete [1] while changing the conditions in the problem
resulted in quite different complexity results. We have shown
using both logspace and AC reductions that 3D-MGGRg(1)
€ UL N coUL. Further, we show that merely removing the
monotonicity conditions in the Z direction are enough to result
in an NL-Complete problem even after restricting the number
of layers to 2. We show this using what is actually a first order
projection a weaker form of reductions. All of our results show
that 3D-GGR is an interesting problem to be looked at from
a space complexity point of view.

The results described in this thesis showcase the interesting
properties of 3D grid graphs, how the monotonicity and
number of layers affects the complexity of reachability. One
shortcoming of most of our reductions is that the large blow
up in the sizes of the resultant instances after our reduction.
In Theorem 1, we see a blow up of the order of m©¥)
which is a large quantity. If this can be reduced to the form
of mPM) x f(k), then we can get stronger results. Such
a form could potentially allow k to increase, for example,
flk) = 22" can allow k& = log log(n). These (and those
mentioned in Section IV-D) are all open problems that would
shed more light on the behavior of 3D grid graphs with respect
to reachability.

Apart from these, other problems can also be looked at
for the class of 3D grid graphs. Reachability in undirected
3D grid graphs might be useful to study to better understand
complexity classes within L. Problems other than reachability,
for example, length of paths, may also be of interest for this
class of graphs. 3D grid graphs thus show a lot of potential
for further study.
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