Linear Programming
 Lecture 20

Akshar Varma
09-10 August, 2023
CS3000 Algorithms and Data

Linear Programs

LP Duality

1. Linear Programs

Linear Programs

- A optimization problem where we aim to maximize/minimize a linear objective.
- All the constraints in the problem are also linear.

$$
\begin{aligned}
\max & c^{T} x \\
\text { such that } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \max ^{\operatorname{man}} \sum_{i=1}^{n}, r_{j} \\
& \text { such that } \quad \sum_{j=1}^{m} a_{i j} x_{j} \leq b_{i} \quad \text { for all } 1 \leq i \leq m \\
& x_{j} \geq 0 \\
& \text { for all } 1 \leq j \leq n
\end{aligned}
$$

Brewery Problem

Brewery Problem: How much ale and beer should be produced to maximize profit?

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Total	480	160	1190	

- All ale (34 units)
$\Longrightarrow 442$
- All beer (32 units)
$\Longrightarrow 736$
- 7.5 units ale, 29.5 units beer
$\Longrightarrow 776$
- 12 units ale, 28 units beer
$\Longrightarrow 800$

Brewery Problem Modeled as an LP

$$
\begin{aligned}
\max & 13 A+23 B \\
\text { s.t. } & 5 A+15 B \leq 480 \\
& 4 A+4 B \leq 160 \\
& 35 A+20 B \leq 1190 \\
& A, B \geq 0
\end{aligned}
$$

Entrepreneur Problem

Entrepreneur Problem: Buy raw materials at minimum cost from the brewer

Beverage	Corn	Hops	Malt	Profit
Ale	5	4	35	13
Beer	15	4	20	23
Total	480	160	1190	

Let C, H, M are units of corn, hops, malt.
Brewer won't sell if, for example, $5 C+4 H+35 M \leq 13$.

Entrepreneur Problem Modeled as an LP

$$
\begin{array}{cl}
\min & 480 C+160 H+1190 M \\
\text { s.t. } & 5 C+4 H+25 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \\
& C, H, M \geq 0
\end{array}
$$

2. LP Duality

LP Duality

The "primal" formulation of an LP

$$
\begin{aligned}
\max & c^{T} x \\
\text { such that } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

has a "dual" formulation

$$
\begin{aligned}
\min & b^{T} y \\
\text { such that } & A^{T} y \geq c \\
& y \geq 0
\end{aligned}
$$

- Just like max flow-min cut, the max of the primal is upper bounded by min of dual.
- In fact, the strong duality also holds: $\max c^{T} x=\min b^{T} y$. (If feasible.)

Maximum Flow is an LP

Maximum Flow f : variables are $f(e)$, the flow through edge e.

$$
\max \sum_{e=(s, v) \in E} f(e)
$$

such that $\quad f(e) \leq c(e)$

$$
\forall e \in E \text { (Capacity bound) }
$$

$$
\begin{array}{lr}
\sum_{e=(u, v) \in E} f(e)-\sum_{e^{\prime}=(v, w) \in E} f\left(e^{\prime}\right)=0 & \forall v \in V-\{s, t\} \text { (Flow Conservation) } \\
f(e) \geq 0 & \forall e \in E \text { (Non-negative flow) }
\end{array}
$$

Minimum Cut is an LP

(dual of Max Flow)

Minimum Cut (A, B) : the variables are
$s_{u v} \in\{0,1\}$ edge (u, v) in cut-set or not
$a_{u} \in\{0,1\}$ vertex $u \in A$.
Note that by definition $a_{s}=1, a_{t}=0$.

$$
\begin{aligned}
\min & \sum_{(u, v) \in E} c_{u v} s_{u v} \\
\text { such that } & s_{u v}-a_{u}+a_{v} \geq 0 \\
& s_{u v} \geq 0 \\
& a_{v} \geq 0
\end{aligned}
$$

$$
\begin{gathered}
\forall(u, v) \in E \text { (force legal cut) } \\
\forall(u, v) \in E \\
\forall v \in V-\{s, t\}
\end{gathered}
$$

