
Network Flows
Lecture 18

Akshar Varma
7–8 August, 2023

CS3000 Algorithms and Data

Flow Networks

Max Flow-Min Cut Theorem

Reductions and Applications

1. Flow Networks

Flow Networks: 𝑁 = (𝐺, 𝑐, 𝑠, 𝑡)

• Directed graph 𝐺 = (𝑉 , 𝐸); edge capacities 𝑐 ∶ 𝐸 → ℝ≥0; source 𝑠, terminal 𝑡.
• Models transportation networks: water pipelines, electric grids, road traffic, etc.
• Flow through an edge 𝑓 ∶ 𝐸 → ℝ≥0. How much can “flow” through?
• What can stop flow from a source vertex 𝑠 to a terminal vertex 𝑡?

1 / 45

Flow Conservation and Capacity Limits

• The capacities are constraints; can’t sent more than the capacity. 𝑓(𝑒) ≤ 𝑐(𝑒), ∀𝑒 ∈ 𝐸
• Cannot except 8 lanes of vehicles on a 4 lane road or more water than size of pipe.
• Also, if something enters a node except source and sink, it must leave.
For all vertices 𝑣 ∈ 𝑉 − {𝑠, 𝑡} flow must satisfy: ∑𝑒=(𝑢,𝑣) 𝑓(𝑒) = ∑𝑒=(𝑣,𝑤) 𝑓(𝑒).

• If you enter an intersection, you must leave; water coming in, must go out.

2 / 45

An example flow satisfying all conditions

Value of flow |𝑓| = ∑𝑒=(𝑠,𝑢) 𝑓(𝑒) − ∑𝑒=(𝑤,𝑠) 𝑓(𝑒). Total flow out of 𝑠.

Always equal to total flow into 𝑡 by conservation of flow.
3 / 45

Maximum Flow possible in this network

4 / 45

Capacity of Cut

• A cut (𝐴, 𝐵) separates source 𝑠 ∈ 𝐴 and terminal 𝑡 ∈ 𝐵.
• Capacity of cut ‖𝐴, 𝐵‖ is sum of capacities of edges from 𝐴 to 𝐵.

5 / 45

Capacity of (another) Cut

6 / 45

Minimum Cut Capacity

7 / 45

2. Max Flow-Min Cut Theorem

Max Flow-Min Cut Theorem and other useful facts

• Lemma: For any flow 𝑓 and any cut (𝐴, 𝐵), |𝑓| equals net flow across (𝐴, 𝐵).
• Weak duality: Any flow value is smaller than any cut capacity.
• Strong duality: Maximum flow is equal to the minimum cut capacity.
• Alternatively: If the |𝑓| = ‖𝐴, 𝐵‖, then it is the max flow and the min cut.
• If all capacities are integral 𝑐 ∶ 𝐸 → ℕ≥0, then there is a max-flow with 𝑓 ∶ 𝐸 → ℕ≥0.
• Maximum flows (and minimum cuts) can be computed in 𝑂(𝑉 𝐸) time.
• Terminology: Edges “saturated” if 𝑓(𝑒) = 𝑐(𝑒), “avoided” if 𝑓(𝑒) = 0.
• Flow can always be decomposed into cycles and paths.
• There is always a flow in which only one of 𝑓(𝑢, 𝑣) and 𝑓(𝑣, 𝑢) are non-zero.

8 / 45

3. Reductions and Applications

Reductions to Max Flow-Min Cut

• Max flow and min cut can solve a large variety of find the “best” problems.
• 𝑁 = (𝐺, 𝑐, 𝑠, 𝑡) can represent many types of problems.
• In these cases finding max flow (value)/min cut (capacity) gives the solution.
• We use the terminology “reduction” when we convert a problem to another.
• Intuitively: the problem difficulty reduces to that of something we know how to do.
• Flow network must be created so that its solution easily solves original problem.
• Requires converting flow (value)/cut (capacity) into original problem solution.
• Just a matter of interpreting appropriately; sometimes requires minimal conversion.
• Given a problem solution pair 𝑃 , 𝑆, map it to a flow network: 𝑅(𝑃) = (𝐺, 𝑐, 𝑠, 𝑡).
• Our 𝑅(𝑃) must be such that we can easily compute 𝑅′ (𝑓, |𝑓|, (𝐴, 𝐵), ‖𝐴, 𝐵‖) = 𝑆.

9 / 45

Applications of Max Flow-Min Cut

We’ll solve the following problems by reducing to a flow problem:

• Number of edge disjoint paths from 𝑠 to 𝑡.
• Vertex capacities and number of vertex disjoint paths from 𝑠 to 𝑡.
• Bipartite Matching.
• Tuple Selection (generalizes bipartite matching).
• Extending flow networks to cases where there are:

• Multiple sources/sinks
• Circulations with supplies, demands
• Capacity lower bounds

• Minimum Cost Circulations
• Survey Design: for customers (constraints on products/customers/questions etc.)
• Airline Scheduling: schedule equipment and crew for most customer satisfaction.
• Image Segmentation: divide images into coherent/meaningful regions.
• Project Selection: choose projects to maximize revenue with prerequisite constraints.

10 / 45

Disjoint Paths given 𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡

• We want the maximum number of paths from 𝑠 to 𝑡 that are disjoint from each other.
• One example application of this is in communication networks.
• Edge disjoint paths: must have no edges in common between two paths.
• Cannot have same channel being used for the same conversation.
• How many conversations can keep happening simultaneously?
• On the flip side, how many links broken completely prevents 𝑠 communicating to 𝑡?
• Vertex disjoint paths: must have no common vertices among any two paths.
• There may be limits on how much each cell tower can handle/transmit.
• How many cell towers needed for expected call volume?

11 / 45

Edge Disjoint Paths in Graphs

• Assign capacity 1 to every edge in the graph. 𝐺′

• Flow |𝑓| will equal the number of edge disjoint paths 𝑘. Why?
• Each edge can contribute to at most one path since capacity 1. (Integrality!)
• Find the paths by traversing from 𝑠 to 𝑡 using 𝑓(𝑒) = 1 edges.
• Remove paths found, and repeat until all paths found.

• What if graph was undirected?
• Make every edge {𝑢, 𝑣} into two antiparallel edges (𝑢, 𝑣) and (𝑣, 𝑢).
• Reduction! Undirected graph edge disjoint paths ⟶ Digraph edge disjoint paths.

12 / 45

Network Connectivity and Menger’s Theorem

• A subset of edges 𝐹 ⊆ 𝐸 disconnects 𝑡 from 𝑠 if each 𝑠 − 𝑡 path has some 𝑒 ∈ 𝐹 .
• If we remove edges from 𝐹 , then no path from 𝑠 to 𝑡 will remain.
• Network Connectivity: Find minimum sized 𝐹 which disconnects 𝑡 from 𝑠.
• Menger’s Theorem:
Max number of edge disjoint 𝑠 − 𝑡 paths = min size for 𝐹 ⊆ 𝐸 to disconnect 𝑡 from 𝑠.

• Our earlier reduction will also allow us to find out about network connectivity.
• In fact, the min cut capacity in that reduction is the size of the best 𝐹 ⊆ 𝐸.
• Menger’s theorem is a special case of max flow-min cut theorem; for capacity 1 edges.

13 / 45

Vertex Capacities and Vertex Disjoint Paths

• We’ve seen a lot about edge capacities, what if we want capacities on vertices 𝑐(𝑣)?
• Do we need to come up with new algorithms, theorems, and so on?
• No! Come up with a reduction!
• Replace every vertex 𝑣 with 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡, add (𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡), s. t 𝑐(𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡) = 𝑐(𝑣).
• Every edge into 𝑣 now goes into 𝑣𝑖𝑛 and every edge out of 𝑣 comes out of 𝑣𝑜𝑢𝑡.

• This reduction of making a vertex into an edge gives us more power (conceptually).
• We can think in terms of vertex capacities in our reduction from this point.
• Vertex disjoint paths ⟶ reduce using 𝑐(𝑣) = 1 ⟶ 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 gives edge disjoint paths.

14 / 45

Vertex Capacities Reduction

Figure from Jeff Erickson’s book

15 / 45

Bipartite Matching

• “Match” up vertices on one side of a bipartite graph with vertices on the other side.
• Formally: A subset of edges, such that no vertex in two edges.
• Maximum Matching: The largest matching that exists, as many pairs matched up.
• Original application: Matching doctors and hospitals based on their preferences.
• Doctors list hospitals they are willing to work at.
• Hospitals list doctors they’re willing to hire.
• Bipartite graph: Doctors and hospitals are vertices. Edge iff vertices okay to match.
• Maximum bipartite matching: find largest matching in this graph.
• Match as many doctor-hospital pairs up.

16 / 45

Bipartite Matching Example

17 / 45

Reducing Bipartite Matching to Network Flow

• 𝐺 = (𝑉 , 𝐸) where 𝑉 = 𝐿 ∪ 𝑅 is union of two sets of vertices (left and right).
• Edges describe all pairings that are acceptable to both sides.
• We want to create 𝑁 = (𝐺′, 𝑐, 𝑠, 𝑡) given 𝐺.
• 𝑁 must have property that some of 𝑓, |𝑓|, (𝐴, 𝐵), ‖𝐴, 𝐵‖ gives maximum matching.
• Ideas?
• Vertices would be new 𝑠, 𝑡 with all old vertices.
• Every edge {𝑙, 𝑟} which existed becomes a directed edge (𝑙, 𝑟) with ∞ capacity.
• Add edge (𝑠, ℓ) for all ℓ ∈ 𝐿 with capacity 1.
• Add edge (𝑟, 𝑡) for all 𝑟 ∈ 𝑅 with capacity 1.

• 𝑁 = (𝐺′ = (𝑉 ∪ {𝑠, 𝑡}, {(ℓ, 𝑟), (𝑠, ℓ), (𝑟, 𝑡)}), 𝑐, 𝑠, 𝑡)
• There is matching of size |𝑓| where |𝑓| is the maximum flow value.
• Edges with 𝑓(ℓ, 𝑟) = 1 give the actual matching edges.

18 / 45

Bipartite Matching Reduction Visualization

19 / 45

Matching to Flow

20 / 45

Flow to Matching

21 / 45

Tuple Selection

• Bipartite matching is special case of a more general “assignment” type problem.
• You now have many sets 𝑋1, 𝑋2, … , 𝑋𝑑.
• Want to select as many 𝑑−tuples as possible subject to various capacity constraints:

1. ∀𝑖, we have that 𝑥 ∈ 𝑋𝑖 can appear in at most 𝑐(𝑥) tuples.
2. ∀𝑖, we have that 𝑥 ∈ 𝑋𝑖, 𝑦 ∈ 𝑋𝑖+1 can appear in at most 𝑐(𝑥, 𝑦) tuples.

• The 𝑐(𝑥), 𝑐(𝑥, 𝑦) values are usually some small non-negative number or ∞.
• Maximum matching: 𝑑 = 2, each 𝑥 has 𝑐(𝑥) = 1, each pair 𝑥, 𝑦 has 𝑐(𝑥, 𝑦) ∈ {0, 1}.
• Reduction:

• Each 𝑥 ∈ 𝑋𝑖, ∀𝑖 has a vertex with capacity 𝑐(𝑥). Special vertices 𝑠, 𝑡.
• Edges (𝑠, 𝑤) for all 𝑤 ∈ 𝑋1 and (𝑧, 𝑡) for all 𝑧 ∈ 𝑋𝑑 with capacity 1.
• Edges (𝑥, 𝑦) for 𝑥 ∈ 𝑋𝑖, 𝑦 ∈ 𝑋𝑖+1 for all 𝑖 with capacity 𝑐(𝑥, 𝑦).

22 / 45

Tuple Selection Flow Network

Figure from Jeff Erickson’s book

23 / 45

Exam Scheduling at Uskees University

• 𝑛 different classes, to be scheduled into one of 𝑟 rooms, with 𝑡 available time slots.
• At most one class in one room in one time slot.
• Classes cannot be split into different rooms or different time slots.
• There are 𝑝 proctors to oversee the exam. One proctor oversees one exam at a time.
• Proctors available at different time slots; each can proctor at most 5 exams.
• You know enrollment 𝐸[𝑖] in class 𝑖 via 𝐸[1 … 𝑛]; size 𝑆[𝑗] of room 𝑗 via 𝑆[1 … 𝑟].
• Scheduling class 𝑖 in room 𝑗 requires that 𝐸[𝑖] ≤ 𝑆[𝑗].
• Availability of proctors for each time slot 𝐴[𝑘, ℓ] ∈ {0, 1} known via 𝐴[1 … 𝑡, 1 … 𝑝].
• Fits into tuple selection framework; 4 resources: classes, rooms, times, proctors.
• Any ideas on how this becomes a network?

24 / 45

How Would the Exam Scheduling Network Look Like?

Exam scheduling network flow formulation

25 / 45

Exam Scheduling Network Definition

• Create 𝑠, 𝑡 and vertices for each class 𝑐𝑖, room 𝑟𝑗, time slot 𝑡𝑘 and proctor 𝑝ℓ.
• Add edges 𝑠 to 𝑐𝑖 with capacity 1. (each class holds one final)
• Add edges 𝑐𝑖 to 𝑟𝑗 of ∞ capacity iff 𝐸[𝑖] ≤ 𝑆[𝑗]. (class vs. room size limits)
• Add edges 𝑟𝑗 to 𝑡𝑘 with capacity 1 for all 𝑗, 𝑘. (1 exam in room 𝑗 in slot 𝑘).
• Add edges 𝑡𝑘 to 𝑝ℓ with capacity 1 iff 𝐴[𝑘, ℓ] = 1. (proctor’s availability)
• Add edges 𝑝ℓ to 𝑡 with capacity 5. (can proctor at most 5 exams)

26 / 45

Extending Max Flow

• We saw how to extend max flow to deal with vertex capacities. We can do more.

• What if there are multiple sources and multiple sinks?
• Create a super source and connect to each source; similarly use a super sink.

• Circulations with supplies and demands: each vertex has a demand 𝑑(𝑣) ∈ ℝ.
• No special source or sink, products need to circulate in network.
• No concept of transport from source to a terminal vertex.
• Question: Is there a flow that satisfies circulation constraints?

27 / 45

Circulation Network with Supplies and Demands

28 / 45

Reducing Circulations with Supplies and Demands

• Now we have a 𝑑(𝑣) for every vertex, not a capacity but a “demand”.
• 𝑑(𝑣) > 0 is a supply node and 𝑑(𝑣) < 0 is a demand node.
• Reduction: Create super sink, super source.
• For every 𝑑(𝑣) < 0, connect sink to 𝑣 with capacity −𝑑(𝑣) (positive).
• For 𝑑(𝑣) > 0, connect 𝑣 to sink with capacity 𝑑(𝑣).
• Circulation ⟺ max flow is ∑𝑣∶𝑑(𝑣)>0 𝑑(𝑣) = ∑𝑣∶𝑑(𝑣)<0 −𝑑(𝑣)
• Same as checking if edges leaving 𝑠 and entering 𝑡 are saturated.

29 / 45

Reduction for Circulation Network with Supplies and Demands

30 / 45

Flow Lower Bounds

• What if flow must satisfy a lower bound at each edge: ℓ(𝑒) ≤ 𝑓(𝑒) ≤ 𝑐(𝑒)?
• We reduce this to circulations with demands.
• “Send” ℓ(𝑒) units of flow through the edge and adjust the demands on vertices.
• Start vertex creates and end vertex consumes.

31 / 45

Minimum Cost Circulations

• Everything until now, we’ve reduced to max flow.
• However, that is not the most broad framework of this kind.
• Circulations can have costs in addition to upper+lower bounds and demands.
• Let 𝑝(𝑒) denote a price associated with sending flow through an edge.
• The total cost, which we want to minimize is ∑𝑒∈𝐸 𝑝(𝑒) ⋅ 𝑓(𝑒).
• Of course, this still has to be subject to flow conservation and capacity bounds.

min ∑
𝑒∈𝐸

𝑝(𝑒) ⋅ 𝑓(𝑒)

s.t.
ℓ(𝑒) ≤ 𝑓(𝑒) ≤ 𝑢(𝑒) Capacity Bounds

∑
𝑒=(𝑢,𝑣)∈𝐸

𝑓(𝑒) − ∑
𝑒=(𝑣,𝑤)∈𝐸

𝑓(𝑒′) = 𝑑(𝑣) Flow Conservation

32 / 45

Survey Design

• Design a survey to ask 𝑛 consumers about 𝑚 products.
• There must be one survey question per product.
• You can only survey consumer 𝑖 about product 𝑗 is they own it.
• Consumer 𝑖 must be asked between 𝑐𝑖 and 𝑐′

𝑖 questions.
• At least 𝑝𝑗 and at most 𝑝′

𝑗 consumers need to be surveyed for product 𝑗.
• Is there a survey design that meets these requirements?
• If there is, design it, or correctly show why it isn’t possible.

33 / 45

Survey Design Network Formulation

• We’ll need lower bounds, so let us use circulations with lower bounds.
• We don’t need any demands on vertices so all 𝑑(𝑣) = 0.
• Create a 𝑠, 𝑡 and vertices for each consumer and product.
• Add edge (𝑖, 𝑗) if consumer 𝑖 owns product 𝑗; set capacity bounds [0, 1].
• Add edges from 𝑠 to consumer 𝑖; set capacity bounds [𝑐𝑖, 𝑐′

𝑖].
• Add edges from product 𝑗 to 𝑡; set capacity bounds [𝑝𝑗, 𝑝′

𝑗].
• Add an edge from 𝑡 to 𝑠; set capacity bounds [0, ∞].
• If there is an integral circulation, then survey possible.

34 / 45

Survey Design Network Visualization

35 / 45

Airline Scheduling

• Need to manage allocation of equipment, crew, customer satisfaction and so on.
• These require scheduling where equipment and crew should be at all times.
• Toy setup: minimize the number of flight crews needed given these constraints:
• Set of 𝑘 flights each day.
• Flight 𝑖 leaves origin 𝑜𝑖 at time 𝑠𝑖 and reaches destination 𝑑𝑖 at time 𝑓𝑖.

36 / 45

Airline Scheduling via Circulations

• For each flight 𝑖 create two vertices 𝑢𝑖 (start of flight) and 𝑣𝑖 (end of flight).
• Add source 𝑠 with demand −𝑐, connect to each 𝑢𝑖 with capacity bounds [0, 1].
• Add sink 𝑡 with demand 𝑐, connected from each 𝑣𝑖 with capacity bounds [0, 1].
• For each flight 𝑖, add edge (𝑢𝑖, 𝑣𝑖) with capacity bounds [1, 1].
• If same crew can service flights 𝑖 & 𝑗 add (𝑣𝑖, 𝑢𝑗) with bounds [0, 1].

37 / 45

Airline Scheduling Network Visualization

38 / 45

Image Segmentation

• Separate image into foreground and background.
• The pixels becomes vertices and neighboring vertices are neighbors in graph.
• We want to have as few foreground pixels end up in the background and vice versa.
• For pixel 𝑖, let 𝑎𝑖 ≥ 0, 𝑏𝑖 ≥ 0 be foreground/background likelihood respectively.
• We also want some smoothness in the foreground/background separation.
• So we’ll penalize our separation whenever 𝑖 is a different side than most neighbors.
• We’ll use 𝑝𝑖𝑗 ≥ 0 as penalty for labeling pixel 𝑖 and 𝑗 differently.

• So we want:

min ∑
𝑖∈𝐵

𝑎𝑖 + ∑
𝑗∈𝐴

𝑏𝑗 + ∑
(𝑖,𝑗)∈𝐸

|𝐴∩{𝑖,𝑗}|=1

𝑝𝑖𝑗

39 / 45

Minimum Cut Modeling of Image Segmentation

• Create a node for each pixel; add antiparallel edges between neighbors.
• Source 𝑠 acts as “foreground” side, sink 𝑡 acts as “background”.
• Capacities 𝑎𝑗 from 𝑠 to pixels, 𝑏𝑖 from pixels to sink; 𝑝𝑖𝑗 on antiparallels.
• Find minimum cut; it will give separation into foreground and background segments.

Image Segmentation Minimum Cut Formulation
40 / 45

Minimum Cut Visualization for Image Segmentation

‖𝐴, 𝐵‖ = ∑
𝑖∈𝐵

𝑎𝑖 + ∑
𝑗∈𝐴

𝑏𝑗 + ∑
(𝑖,𝑗)∈𝐸

|𝐴∩{𝑖,𝑗}|=1

𝑝𝑖𝑗 A is foreground

41 / 45

Project Selection

• Set of projects 𝑃 with revenue 𝑝𝑣 for project 𝑣 ∈ 𝑃 .
• Prerequisites E: (𝑣, 𝑤) ∈ 𝐸 ⟹ 𝑤 is a prerequisite for 𝑣.
• A subset of projects 𝐴 ⊆ 𝑃 feasible if all prerequisites of 𝑝 ∈ 𝐴 present in 𝐴.

• Given a sets 𝑃 , 𝐸, choose a feasible subset of projects to maximize revenue.
42 / 45

Minimum Cut Formulation of Project Selection

• We’ll model using minimum cut.
• Assign capacity ∞ to each prerequisite edge since they must not be cut.
• Add (𝑠, 𝑣) with capacity 𝑝𝑣 if 𝑝𝑣 > 0 and (𝑣, 𝑡) with capacity 𝑝𝑣 if 𝑝𝑣 < 0.

43 / 45

Minimum Cut Visualization for Project Selection

• Output: 𝐴 − {𝑠} from min-cut (𝐴, 𝐵). Due to ∞ capacities, 𝐴 must be feasible.

‖𝐴, 𝐵‖ = ∑
𝑣∈𝐵∶𝑝𝑣>0

𝑝𝑣 + ∑
𝑣∈𝐴∶𝑝𝑣<0

(−𝑝𝑣) = ∑
𝑣∶𝑝𝑣>0

𝑝𝑣 − ∑
𝑣∈𝐴

𝑝𝑣

• Min-Cut Capacity is a constant minus total revenue of chosen projects.
• Minimizing this is the same as maximizing revenue.

44 / 45

Baseball Elimination

45 / 45

