Network Flows

Lecture 18

Akshar Varma
7-8 August, 2023
CS3000 Algorithms and Data

Flow Networks

Max Flow-Min Cut Theorem

Reductions and Applications

1. Flow Networks

Flow Networks: $N=(G, c, s, t)$

- Directed graph $G=(V, E)$; edge capacities $c: E \rightarrow \mathbb{R}^{\geq 0}$; source s, terminal t.
- Models transportation networks: water pipelines, electric grids, road traffic, etc.
- Flow through an edge $f: E \rightarrow \mathbb{R}^{\geq 0}$. How much can "flow" through?
- What can stop flow from a source vertex s to a terminal vertex t ?

Flow Conservation and Capacity Limits

- The capacities are constraints; can't sent more than the capacity. $f(e) \leq c(e), \forall e \in E$
- Cannot except 8 lanes of vehicles on a 4 lane road or more water than size of pipe.
- Also, if something enters a node except source and sink, it must leave. For all vertices $v \in V-\{s, t\}$ flow must satisfy: $\sum_{e=(u, v)} f(e)=\sum_{e=(v, w)} f(e)$.
- If you enter an intersection, you must leave; water coming in, must go out.

An example flow satisfying all conditions

Value of flow $|f|=\sum_{e=(s, u)} f(e)-\sum_{e=(w, s)} f(e)$. Total flow out of s.

Always equal to total flow into t by conservation of flow.

Maximum Flow possible in this network

Capacity of Cut

- A cut (A, B) separates source $s \in A$ and terminal $t \in B$.
- Capacity of cut $\|A, B\|$ is sum of capacities of edges from A to B.

Capacity of (another) Cut

Minimum Cut Capacity

2. Max Flow-Min Cut Theorem

Max Flow-Min Cut Theorem and other useful facts

- Lemma: For any flow f and any cut $(A, B),|f|$ equals net flow across (A, B).
- Weak duality: Any flow value is smaller than any cut capacity.
- Strong duality: Maximum flow is equal to the minimum cut capacity.
- Alternatively: If the $|f|=\|A, B\|$, then it is the max flow and the min cut.
- If all capacities are integral $c: E \rightarrow \mathbb{N}^{\geq 0}$, then there is a max-flow with $f: E \rightarrow \mathbb{N} \geq 0$.
- Maximum flows (and minimum cuts) can be computed in $O(V E)$ time.
- Terminology: Edges "saturated" if $f(e)=c(e)$, "avoided" if $f(e)=0$.
- Flow can always be decomposed into cycles and paths.
- There is always a flow in which only one of $f(u, v)$ and $f(v, u)$ are non-zero.

3. Reductions and Applications

Reductions to Max Flow-Min Cut

- Max flow and min cut can solve a large variety of find the "best" problems.
- $N=(G, c, s, t)$ can represent many types of problems.
- In these cases finding max flow (value)/min cut (capacity) gives the solution.
- We use the terminology "reduction" when we convert a problem to another.
- Intuitively: the problem difficulty reduces to that of something we know how to do.
- Flow network must be created so that its solution easily solves original problem.
- Requires converting flow (value)/cut (capacity) into original problem solution.
- Just a matter of interpreting appropriately; sometimes requires minimal conversion.
- Given a problem solution pair P, S, map it to a flow network: $R(P)=(G, c, s, t)$.
- Our $R(P)$ must be such that we can easily compute $R^{\prime}(f,|f|,(A, B),\|A, B\|)=S$.

Applications of Max Flow-Min Cut

We'll solve the following problems by reducing to a flow problem:

- Number of edge disjoint paths from s to t.
- Vertex capacities and number of vertex disjoint paths from s to t.
- Bipartite Matching.
- Tuple Selection (generalizes bipartite matching).
- Extending flow networks to cases where there are:
- Multiple sources/sinks
- Circulations with supplies, demands
- Capacity lower bounds
- Minimum Cost Circulations
- Survey Design: for customers (constraints on products/customers/questions etc.)
- Airline Scheduling: schedule equipment and crew for most customer satisfaction.
- Image Segmentation: divide images into coherent/meaningful regions.
- Project Selection: choose projects to maximize revenue with prerequisite constraints.

Disjoint Paths given $G=(V, E), s, t$

- We want the maximum number of paths from s to t that are disjoint from each other.
- One example application of this is in communication networks.
- Edge disjoint paths: must have no edges in common between two paths.
- Cannot have same channel being used for the same conversation.
- How many conversations can keep happening simultaneously?
- On the flip side, how many links broken completely prevents s communicating to t ?
- Vertex disjoint paths: must have no common vertices among any two paths.
- There may be limits on how much each cell tower can handle/transmit.
- How many cell towers needed for expected call volume?

Edge Disjoint Paths in Graphs

- Assign capacity 1 to every edge in the graph. G^{\prime}
- Flow $|f|$ will equal the number of edge disjoint paths k. Why?
- Each edge can contribute to at most one path since capacity 1. (Integrality!)
- Find the paths by traversing from s to t using $f(e)=1$ edges.
- Remove paths found, and repeat until all paths found.
- What if graph was undirected?
- Make every edge $\{u, v\}$ into two antiparallel edges (u, v) and (v, u).
- Reduction! Undirected graph edge disjoint paths \longrightarrow Digraph edge disjoint paths.

Network Connectivity and Menger's Theorem

- A subset of edges $F \subseteq E$ disconnects t from s if each $s-t$ path has some $e \in F$.
- If we remove edges from F, then no path from s to t will remain.
- Network Connectivity: Find minimum sized F which disconnects t from s.
- Menger's Theorem:

Max number of edge disjoint $s-t$ paths $=\min$ size for $F \subseteq E$ to disconnect t from s.

- Our earlier reduction will also allow us to find out about network connectivity.
- In fact, the min cut capacity in that reduction is the size of the best $F \subseteq E$.
- Menger's theorem is a special case of max flow-min cut theorem; for capacity 1 edges.

Vertex Capacities and Vertex Disjoint Paths

- We've seen a lot about edge capacities, what if we want capacities on vertices $c(v)$?
- Do we need to come up with new algorithms, theorems, and so on?
- No! Come up with a reduction!
- Replace every vertex v with $v_{\text {in }}, v_{\text {out }}$, add $\left(v_{\text {in }}, v_{\text {out }}\right)$, $\mathrm{s} . \mathrm{t} c\left(v_{\text {in }}, v_{\text {out }}\right)=c(v)$.
- Every edge into v now goes into $v_{\text {in }}$ and every edge out of v comes out of $v_{\text {out }}$.
- This reduction of making a vertex into an edge gives us more power (conceptually).
- We can think in terms of vertex capacities in our reduction from this point.
- Vertex disjoint paths \longrightarrow reduce using $c(v)=1 \longrightarrow v_{\text {in }}, v_{\text {out }}$ gives edge disjoint paths.

Vertex Capacities Reduction

Figure 11.1. Reducing vertex-disjoint paths in G to edge-disjoint paths in \bar{G}.
Figure from Jeff Erickson's book

Bipartite Matching

- "Match" up vertices on one side of a bipartite graph with vertices on the other side.
- Formally: A subset of edges, such that no vertex in two edges.
- Maximum Matching: The largest matching that exists, as many pairs matched up.
- Original application: Matching doctors and hospitals based on their preferences.
- Doctors list hospitals they are willing to work at.
- Hospitals list doctors they're willing to hire.
- Bipartite graph: Doctors and hospitals are vertices. Edge iff vertices okay to match.
- Maximum bipartite matching: find largest matching in this graph.
- Match as many doctor-hospital pairs up.

Bipartite Matching Example

matching: 1-1', 2-2', 3-4', 4-5'

Reducing Bipartite Matching to Network Flow

- $G=(V, E)$ where $V=L \cup R$ is union of two sets of vertices (left and right).
- Edges describe all pairings that are acceptable to both sides.
- We want to create $N=\left(G^{\prime}, c, s, t\right)$ given G.
- N must have property that some of $f,|f|,(A, B),\|A, B\|$ gives maximum matching.
- Ideas?
- Vertices would be new s, t with all old vertices.
- Every edge $\{l, r\}$ which existed becomes a directed edge (l, r) with ∞ capacity.
- Add edge (s, ℓ) for all $\ell \in L$ with capacity 1 .
- Add edge (r, t) for all $r \in R$ with capacity 1 .
- $N=\left(G^{\prime}=(V \cup\{s, t\},\{(\ell, r),(s, \ell),(r, t)\}), c, s, t\right)$
- There is matching of size $|f|$ where $|f|$ is the maximum flow value.
- Edges with $f(\ell, r)=1$ give the actual matching edges.

Bipartite Matching Reduction Visualization

Matching to Flow

Flow to Matching

Tuple Selection

- Bipartite matching is special case of a more general "assignment" type problem.
- You now have many sets $X_{1}, X_{2}, \ldots, X_{d}$.
- Want to select as many d-tuples as possible subject to various capacity constraints:

1. $\forall i$, we have that $x \in X_{i}$ can appear in at most $c(x)$ tuples.
2. $\forall i$, we have that $x \in X_{i}, y \in X_{i+1}$ can appear in at most $c(x, y)$ tuples.

- The $c(x), c(x, y)$ values are usually some small non-negative number or ∞.
- Maximum matching: $d=2$, each x has $c(x)=1$, each pair x, y has $c(x, y) \in\{0,1\}$.
- Reduction:
- Each $x \in X_{i}, \forall i$ has a vertex with capacity $c(x)$. Special vertices s, t.
- Edges (s, w) for all $w \in X_{1}$ and (z, t) for all $z \in X_{d}$ with capacity 1 .
- Edges (x, y) for $x \in X_{i}, y \in X_{i+1}$ for all i with capacity $c(x, y)$.

Tuple Selection Flow Network

Figure 11.4. The flow network for a tuple selection problem.

Exam Scheduling at Uskees University

- n different classes, to be scheduled into one of r rooms, with t available time slots.
- At most one class in one room in one time slot.
- Classes cannot be split into different rooms or different time slots.
- There are p proctors to oversee the exam. One proctor oversees one exam at a time.
- Proctors available at different time slots; each can proctor at most 5 exams.
- You know enrollment $E[i]$ in class i via $E[1 \ldots n]$; size $S[j]$ of room j via $S[1 \ldots r]$.
- Scheduling class i in room j requires that $E[i] \leq S[j]$.
- Availability of proctors for each time slot $A[k, \ell] \in\{0,1\}$ known via $A[1 \ldots t, 1 \ldots p]$.
- Fits into tuple selection framework; 4 resources: classes, rooms, times, proctors.
- Any ideas on how this becomes a network?

How Would the Exam Scheduling Network Look Like?

Exam scheduling network flow formulation

Exam Scheduling Network Definition

- Create s, t and vertices for each class c_{i}, room r_{j}, time slot t_{k} and proctor p_{ℓ}.
- Add edges s to c_{i} with capacity 1 . (each class holds one final)
- Add edges c_{i} to r_{j} of ∞ capacity iff $E[i] \leq S[j]$. (class vs. room size limits)
- Add edges r_{j} to t_{k} with capacity 1 for all j, k. (1 exam in room j in slot k).
- Add edges t_{k} to p_{ℓ} with capacity 1 iff $A[k, \ell]=1$. (proctor's availability)
- Add edges p_{ℓ} to t with capacity 5. (can proctor at most 5 exams)

Extending Max Flow

- We saw how to extend max flow to deal with vertex capacities. We can do more.
- What if there are multiple sources and multiple sinks?
- Create a super source and connect to each source; similarly use a super sink.
- Circulations with supplies and demands: each vertex has a demand $d(v) \in \mathbb{R}$.
- No special source or sink, products need to circulate in network.
- No concept of transport from source to a terminal vertex.
- Question: Is there a flow that satisfies circulation constraints?

Circulation Network with Supplies and Demands

Reducing Circulations with Supplies and Demands

- Now we have a $d(v)$ for every vertex, not a capacity but a "demand".
- $d(v)>0$ is a supply node and $d(v)<0$ is a demand node.
- Reduction: Create super sink, super source.
- For every $d(v)<0$, connect sink to v with capacity $-d(v)$ (positive).
- For $d(v)>0$, connect v to sink with capacity $d(v)$.
- Circulation \Longleftrightarrow max flow is $\sum_{v: d(v)>0} d(v)=\sum_{v: d(v)<0}-d(v)$
- Same as checking if edges leaving s and entering t are saturated.

Reduction for Circulation Network with Supplies and Demands

Flow Lower Bounds

-What if flow must satisfy a lower bound at each edge: $\ell(e) \leq f(e) \leq c(e)$?

- We reduce this to circulations with demands.
- "Send" $\ell(e)$ units of flow through the edge and adjust the demands on vertices.
- Start vertex creates and end vertex consumes.

flow network G

flow network \mathbf{G}^{\prime}

Minimum Cost Circulations

- Everything until now, we've reduced to max flow.
- However, that is not the most broad framework of this kind.
- Circulations can have costs in addition to upper+lower bounds and demands.
- Let $p(e)$ denote a price associated with sending flow through an edge.
- The total cost, which we want to minimize is $\sum_{e \in E} p(e) \cdot f(e)$.
- Of course, this still has to be subject to flow conservation and capacity bounds.

$$
\min \sum_{e \in E} p(e) \cdot f(e)
$$

s.t.

$$
\begin{aligned}
& \ell(e) \leq f(e) \leq u(e) \\
& \sum_{e=(u, v) \in E} f(e)-\sum_{e=(v, w) \in E} f\left(e^{\prime}\right)=d(v)
\end{aligned}
$$

Capacity Bounds

Flow Conservation

Survey Design

- Design a survey to ask n consumers about m products.
- There must be one survey question per product.
- You can only survey consumer i about product j is they own it.
- Consumer i must be asked between c_{i} and c_{i}^{\prime} questions.
- At least p_{j} and at most p_{j}^{\prime} consumers need to be surveyed for product j.
- Is there a survey design that meets these requirements?
- If there is, design it, or correctly show why it isn't possible.

Survey Design Network Formulation

- We'll need lower bounds, so let us use circulations with lower bounds.
- We don't need any demands on vertices so all $d(v)=0$.
- Create a s, t and vertices for each consumer and product.
- Add edge (i, j) if consumer i owns product j; set capacity bounds $[0,1]$.
- Add edges from s to consumer i; set capacity bounds $\left[c_{i}, c_{i}^{\prime}\right]$.
- Add edges from product j to t; set capacity bounds $\left[p_{j}, p_{j}^{\prime}\right]$.
- Add an edge from t to s; set capacity bounds $[0, \infty]$.
- If there is an integral circulation, then survey possible.

Survey Design Network Visualization

Airline Scheduling

- Need to manage allocation of equipment, crew, customer satisfaction and so on.
- These require scheduling where equipment and crew should be at all times.
- Toy setup: minimize the number of flight crews needed given these constraints:
- Set of k flights each day.
- Flight i leaves origin o_{i} at time s_{i} and reaches destination d_{i} at time f_{i}.

Airline Scheduling via Circulations

- For each flight i create two vertices u_{i} (start of flight) and v_{i} (end of flight).
- Add source s with demand $-c$, connect to each u_{i} with capacity bounds [0, 1].
- Add $\operatorname{sink} t$ with demand c, connected from each v_{i} with capacity bounds $[0,1]$.
- For each flight i, add edge $\left(u_{i}, v_{i}\right)$ with capacity bounds $[1,1]$.
- If same crew can service flights $i \& j$ add $\left(v_{i}, u_{j}\right)$ with bounds $[0,1]$.

Airline Scheduling Network Visualization

Image Segmentation

- Separate image into foreground and background.
- The pixels becomes vertices and neighboring vertices are neighbors in graph.
- We want to have as few foreground pixels end up in the background and vice versa.
- For pixel i, let $a_{i} \geq 0, b_{i} \geq 0$ be foreground/background likelihood respectively.
- We also want some smoothness in the foreground/background separation.
- So we'll penalize our separation whenever i is a different side than most neighbors.
- We'll use $p_{i j} \geq 0$ as penalty for labeling pixel i and j differently.
- So we want:

$$
\min \sum_{i \in B} a_{i}+\sum_{j \in A} b_{j}+\sum_{\substack{(i, j) \in E \\|A \cap\{i, j\}|=1}} p_{i j}
$$

Minimum Cut Modeling of Image Segmentation

- Create a node for each pixel; add antiparallel edges between neighbors.
- Source s acts as "foreground" side, sink t acts as "background".
- Capacities a_{j} from s to pixels, b_{i} from pixels to sink; $p_{i j}$ on antiparallels.
- Find minimum cut; it will give separation into foreground and background segments.

Image Segmentation Minimum Cut Formulation

Minimum Cut Visualization for Image Segmentation

$$
\|A, B\|=\sum_{i \in B} a_{i}+\sum_{j \in A} b_{j}+\sum_{\substack{(i, j) \in E \\|A \cap\{i, j\}|=1}} p_{i j}
$$

A is foreground

Project Selection

- Set of projects P with revenue p_{v} for project $v \in P$.
- Prerequisites $\mathrm{E}:(v, w) \in E \Longrightarrow w$ is a prerequisite for v.
- A subset of projects $A \subseteq P$ feasible if all prerequisites of $p \in A$ present in A.

$\{\mathrm{v}, \mathrm{w}, \mathrm{x}\}$ is feasible

$\{v, x\}$ is infeasible
- Given a sets P, E, choose a feasible subset of projects to maximize revenue.

Minimum Cut Formulation of Project Selection

- We'll model using minimum cut.
- Assign capacity ∞ to each prerequisite edge since they must not be cut.
- Add (s, v) with capacity p_{v} if $p_{v}>0$ and (v, t) with capacity p_{v} if $p_{v}<0$.

Minimum Cut Visualization for Project Selection

- Output: $A-\{s\}$ from min-cut (A, B). Due to ∞ capacities, A must be feasible.

$$
\|A, B\|=\sum_{v \in B: p_{v}>0} p_{v}+\sum_{v \in A: p_{v}<0}\left(-p_{v}\right)=\sum_{v: p_{v}>0} p_{v}-\sum_{v \in A} p_{v}
$$

- Min-Cut Capacity is a constant minus total revenue of chosen projects.
- Minimizing this is the same as maximizing revenue.

Baseball Elimination

