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1. Flow Networks



Flow Networks: N = (G, ¢, s, t)

- Directed graph G = (V, E); edge capacities ¢ : E — R=Y; source s, terminal t.

- Models transportation networks: water pipelines, electric grids, road traffic, etc.
- Flow through an edge f : £ — R=%. How much can “flow” through?

- What can stop flow from a source vertex s to a terminal vertex ¢?

capacity
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Flow Conservation and Capacity Limits

- The capacities are constraints; can't sent more than the capacity. f(e) < c(e),Ve € E
- Cannot except 8 lanes of vehicles on a 4 lane road or more water than size of pipe.
- Also, if something enters a node except source and sink, it must leave.
For all vertices v € V — {s,t} flow must satisfy: Ze:(w) fle) = Ze:(v,w) f(e).
- If you enter an intersection, you must leave; water coming in, must go out.
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An example flow satisfying all conditions

Value of flow |f| = Zez(s w fle)— Ze:(w) f(e). Total flow out of s.
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Always equal to total flow into ¢ by conservation of flow.
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Maximum Flow possible in this network
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Capacity of Cut

- Acut (A, B) separates source s € A and terminal t € B.
- Capacity of cut |4, B| is sum of capacities of edges from A to B.
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Capacity of (another) Cut

-

Y

10 +8+ 16 =34)

v

o—

O 8 D

>

16

don’t include edges
from Bto A

6/ 45



Minimum Cut Capacity
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2. Max Flow-Min Cut Theorem




Max Flow-Min Cut Theorem and other useful facts

- Lemma: For any flow f and any cut (A4, B), |f| equals net flow across (A, B).

- Weak duality: Any flow value is smaller than any cut capacity.

- Strong duality: Maximum flow is equal to the minimum cut capacity.

- Alternatively: If the |f| = | A, B|, then it is the max flow and the min cut.

- If all capacities are integral ¢ : E — N=9, then there is a max-flow with f : E — N=0,
- Maximum flows (and minimum cuts) can be computed in O(V E) time.

- Terminology: Edges “saturated” if f(e) = c(e), “avoided” if f(e) = 0.

- Flow can always be decomposed into cycles and paths.

- There is always a flow in which only one of f(u,v) and f(v, ) are non-zero.
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3. Reductions and Applications




Reductions to Max Flow-Min Cut

- Max flow and min cut can solve a large variety of find the “best” problems.

- N = (G,¢,s,t) can represent many types of problems.

- In these cases finding max flow (value)/min cut (capacity) gives the solution.

- We use the terminology “reduction” when we convert a problem to another.

- Intuitively: the problem difficulty reduces to that of something we know how to do.
- Flow network must be created so that its solution easily solves original problem.

- Requires converting flow (value)/cut (capacity) into original problem solution.

- Just a matter of interpreting appropriately; sometimes requires minimal conversion.
- Given a problem solution pair P, .S, map it to a flow network: R(P) = (G, ¢, s,t).

- Our R(P) must be such that we can easily compute R’ (f,|f|, (4, B),||A, B|) = S.
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Applications of Max Flow-Min Cut

We'll solve the following problems by reducing to a flow problem:

- Number of edge disjoint paths from s to t.

- Vertex capacities and number of vertex disjoint paths from s to ¢
- Bipartite Matching.

- Tuple Selection (generalizes bipartite matching).

- Extending flow networks to cases where there are:

- Multiple sources/sinks
- Circulations with supplies, demands
- Capacity lower bounds

- Minimum Cost Circulations

- Survey Design: for customers (constraints on products/customers/questions etc.)
- Airline Scheduling: schedule equipment and crew for most customer satisfaction.
- Image Segmentation: divide images into coherent/meaningful regions.

- Project Selection: choose projects to maximize revenue with prerequisite constraints.
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Disjoint Paths given G = (V, E)

- We want the maximum number of paths from s to ¢ that are disjoint from each other.
- One example application of this is in communication networks.

- Edge disjoint paths: must have no edges in common between two paths.

- Cannot have same channel being used for the same conversation.

- How many conversations can keep happening simultaneously?

- On the flip side, how many links broken completely prevents s communicating to ¢?

- Vertex disjoint paths: must have no common vertices among any two paths.

- There may be limits on how much each cell tower can handle/transmit.

- How many cell towers needed for expected call volume?
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Edge Disjoint Paths in Graphs

- Assign capacity 1to every edge in the graph. G/

- Flow |f]| will equal the number of edge disjoint paths k. Why?

- Each edge can contribute to at most one path since capacity 1. (Integrality!)
- Find the paths by traversing from s to ¢ using f(e) = 1 edges.

- Remove paths found, and repeat until all paths found.

- What if graph was undirected?
- Make every edge {u, v} into two antiparallel edges (u,v) and (v, ).

- Reduction! Undirected graph edge disjoint paths — Digraph edge disjoint paths.
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Network Connectivity and Menger’s Theorem

- A subset of edges F' C E disconnects ¢ from s if each s — ¢ path has some e € F.
- If we remove edges from F, then no path from s to ¢ will remain.
- Network Connectivity: Find minimum sized F which disconnects ¢ from s.
- Menger's Theorem:
Max number of edge disjoint s — ¢ paths = min size for F C E to disconnect ¢ from s.
- Our earlier reduction will also allow us to find out about network connectivity.
- In fact, the min cut capacity in that reduction is the size of the best F C E.

- Menger's theorem is a special case of max flow-min cut theorem; for capacity 1 edges.
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Vertex Capacities and Vertex Disjoint Paths

- We've seen a lot about edge capacities, what if we want capacities on vertices ¢(v)?
- Do we need to come up with new algorithms, theorems, and so on?

- No! Come up with a reduction!

- Replace every vertex v with v;,,, v, add (v;,,, Vous)s S- L c(V;,, Vo) = (V).

- Every edge into v now goes into v;,, and every edge out of v comes out of v,,,;.

- This reduction of making a vertex into an edge gives us more power (conceptually).
- We can think in terms of vertex capacities in our reduction from this point.
- Vertex disjoint paths — reduce using c¢(v) =1 — v,

wm?

v, SiVes edge disjoint paths.

14 [ 45



Vertex Capacities Reduction

Figure 11.1. Reducing vertex-disjoint paths in G to edge-disjoint paths in G.

Figure from Jeff Erickson’s book
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Bipartite Matching

- “Match” up vertices on one side of a bipartite graph with vertices on the other side.
- Formally: A subset of edges, such that no vertex in two edges.

- Maximum Matching: The largest matching that exists, as many pairs matched up.

- Original application: Matching doctors and hospitals based on their preferences.

- Doctors list hospitals they are willing to work at.

- Hospitals list doctors they're willing to hire.

- Bipartite graph: Doctors and hospitals are vertices. Edge iff vertices okay to match.
- Maximum bipartite matching: find largest matching in this graph.

- Match as many doctor-hospital pairs up.
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Bipartite Matching Example

matching: 1-1',2-2', 3-4', 4-5'
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Reducing Bipartite Matching to Network Flow

- G = (V,E)where V = LU R is union of two sets of vertices (left and right).

- Edges describe all pairings that are acceptable to both sides.

- We want to create N = (G, ¢, s,t) given G.

- N must have property that some of f,|f], (A4, B), |4, B| gives maximum matching.
- Ideas?

- Vertices would be new s, t with all old vertices.

- Every edge {l,r} which existed becomes a directed edge (I,r) with oo capacity.
- Add edge (s,¢) for all £ € L with capacity 1.

- Add edge (r,t) for all » € R with capacity 1.

. N= (G' = (VU {s,t},{(t,7), (s,0), (r,)}),c, s,t)

- There is matching of size | f| where | f| is the maximum flow value.

- Edges with f(¢,r) = 1 give the actual matching edges.
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Bipartite Matching Reduction Visualization
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Matching to Flow
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Flow to Matching
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Tuple Selection

- Bipartite matching is special case of a more general “assignment” type problem.
- You now have many sets X, X, ..., X,
- Want to select as many d—tuples as possible subject to various capacity constraints:

1. Vi, we have that z € X, can appear in at most ¢(z) tuples.
2. Vi, we have that z € X;,y € X,,, can appear in at most ¢(z,y) tuples.

- The ¢(z), e(x, y) values are usually some small non-negative number or oc.
- Maximum matching: d = 2, each z has ¢(x) = 1, each pair x,y has ¢(x,y) € {0,1}.

- Reduction:
- Each = € X, Vi has a vertex with capacity ¢(x). Special vertices s, t.
- Edges (s,w) for allw € X, and (z,t) for all z € X, with capacity 1.
- Edges (z,y) forz € X;,y € X, for all ¢ with capacity ¢(x, ).
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Tuple Selection Flow Network

Figure 11.4. The flow network for a tuple selection problem.

Figure from Jeff Erickson’s book
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Exam Scheduling at Uskees University

- n different classes, to be scheduled into one of » rooms, with ¢ available time slots.
- At most one class in one room in one time slot.

- Classes cannot be split into different rooms or different time slots.

- There are p proctors to oversee the exam. One proctor oversees one exam at a time.
- Proctors available at different time slots; each can proctor at most 5 exams.

- You know enrollment E[i] in class i via E[1...n]; size S[j] of room jvia S[1...7].

- Scheduling class i in room j requires that Efi] < S[j].

- Availability of proctors for each time slot A[k, ¢] € {0,1} known via A[1...¢,1...p].

- Fits into tuple selection framework; 4 resources: classes, rooms, times, proctors.

- Any ideas on how this becomes a network?
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How Would the Exam Scheduling Network Look Like?

proctors

e s complete
classes

Exam scheduling network flow formulation
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Exam Scheduling Network Definition

- Create s,t and vertices for each class ¢;, room rj, time slot ¢, and proctor p,.
- Add edges s to ¢; with capacity 1. (each class holds one final)

- Add edges ¢, to r; of co capacity iff E[i] < S[j]. (class vs. room size limits)

- Add edges r; to ¢, with capacity 1 for all 4, k. (1 exam in room j in slot k).

- Add edges t,, to p, with capacity 1iff A[k,¢] = 1. (proctor’s availability)

- Add edges p, to t with capacity 5. (can proctor at most 5 exams)
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Extending Max Flow

- We saw how to extend max flow to deal with vertex capacities. We can do more.

- What if there are multiple sources and multiple sinks?

- Create a super source and connect to each source; similarly use a super sink.

- Circulations with supplies and demands: each vertex has a demand d(v) € R.
- No special source or sink, products need to circulate in network.
- No concept of transport from source to a terminal vertex.

- Question: Is there a flow that satisfies circulation constraints?
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Circulation Network with Supplies and Demands
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Reducing Circulations with Supplies and Demands

- Now we have a d(v) for every vertex, not a capacity but a “demand”.
- d(v) > 0is a supply node and d(v) < 0 is a demand node.

- Reduction: Create super sink, super source.

- For every d(v) < 0, connect sink to v with capacity —d(v) (positive).
- For d(v) > 0, connect v to sink with capacity d(v).

- Circulation <= max flow is ZM<U>>O d(v) = Zv:d(u)<0 —d(v)

- Same as checking if edges leaving s and entering t are saturated.
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Reduction for Circulation Network with Supplies and Demands

saturates all edges
ﬁ\ leaving s
suppl i
. . — pply and entering ¢

flow network G’ —8 -6

£ @>o

demand

A 4

30/ 45



Flow Lower Bounds

- What if flow must satisfy a lower bound at each edge: ¢(e) < f(e) < c(e)?
- We reduce this to circulations with demands.
- “Send” ¢(e) units of flow through the edge and adjust the demands on vertices.

- Start vertex creates and end vertex consumes.

lower bound upper bound capacity

N e
(D— .01 —(») ) ; o(%)

d(v) d(w) d(v) +2 d(w) -2
flow network G flow network G’
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Minimum Cost Circulations

- Everything until now, we've reduced to max flow.

- However, that is not the most broad framework of this kind.

- Circulations can have costs in addition to upper+lower bounds and demands.

- Let p(e) denote a price associated with sending flow through an edge.

* The total cost, which we want to minimize is >°__.p(e) - f(e).

- Of course, this still has to be subject to flow conservation and capacity bounds.

min Zp(e) - f(e)

ecE
st
l(e) < f(e) <ule) Capacity Bounds
Yo fleo— D fle)=d) Flow Conservation
e=(u,v)eE e=(v,w)eE
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Survey Design

- Design a survey to ask n. consumers about m products.

- There must be one survey question per product.

- You can only survey consumer ¢ about product j is they own it.

- Consumer i must be asked between ¢; and ¢, questions.

* At least p; and at most p; consumers need to be surveyed for product j.
- Is there a survey design that meets these requirements?

- If there is, design it, or correctly show why it isn’t possible.
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Survey Design Network Formulation

- We'll need lower bounds, so let us use circulations with lower bounds.
- We don't need any demands on vertices so all d(v) = 0.

- Create a s,t and vertices for each consumer and product.

- Add edge (4, ) if consumer ¢ owns product j; set capacity bounds [0, 1].
- Add edges from s to consumer 4; set capacity bounds [¢;, ci].

- Add edges from product j to ¢; set capacity bounds [p;, p].

- Add an edge from t to s; set capacity bounds [0, co].

- If there is an integral circulation, then survey possible.
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Survey Design Network Visualization
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Airline Scheduling

- Need to manage allocation of equipment, crew, customer satisfaction and so on.
- These require scheduling where equipment and crew should be at all times.
- Toy setup: minimize the number of flight crews needed given these constraints:

- Set of k flights each day.
- Flight i leaves origin o; at time s, and reaches destination d; at time f;.
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Airline Scheduling via Circulations

- For each flight i create two vertices u; (start of flight) and v; (end of flight).

- Add source s with demand —¢, connect to each u,; with capacity bounds [0, 1].
- Add sink t with demand ¢, connected from each v; with capacity bounds [0, 1].
- For each flight 4, add edge (u;,v;) with capacity bounds [1,1].

- If same crew can service flights i & j add (v;,u;) with bounds [0, 1].
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Airline Scheduling Network Visualization
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Image Segmentation

- Separate image into foreground and background.

- The pixels becomes vertices and neighboring vertices are neighbors in graph.

- We want to have as few foreground pixels end up in the background and vice versa.
- For pixel ¢, let a; > 0,b;, > 0 be foreground/background likelihood respectively.

- We also want some smoothness in the foreground/background separation.

- So we'll penalize our separation whenever i is a different side than most neighbors.

- We'll use p;; > 0 as penalty for labeling pixel i and j differently.

- SO0 we want:

min Y a;+Y b+ Y py
i€B JEA (3,5)€E
[An{i,j}=1
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Minimum Cut Modeling of Image Segmentation

- Create a node for each pixel; add antiparallel edges between neighbors.

- Source s acts as “foreground” side, sink ¢ acts as “background”.

- Capacities a; from s to pixels, b; from pixels to sink; p;; on antiparallels.

- Find minimum cut; it will give separation into foreground and background segments.
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Image Segmentation Minimum Cut Formulation
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Minimum Cut Visualization for Image Segmentation

1A,BI =) a;+) b+ > py A is foreground
icB jEA (1,9)€E
|[AN{i,j}=1

GI
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Project Selection

- Set of projects P with revenue p, for project v € P.
- Prerequisites E: (v,w) € E = w is a prerequisite for v.
- A subset of projects A C P feasible if all prerequisites of p € A present in A.

o N
O C;/
o/ © ©
{v,w,x}is feasible {v, x }is infeasible

- Given a sets P, F, choose a feasible subset of projects to maximize revenue.
42 [ 45



Minimum Cut Formulation of Project Selection

- We'll model using minimum cut.
- Assign capacity oo to each prerequisite edge since they must not be cut.
- Add (s,v) with capacity p,, if p, > 0 and (v, t) with capacity p,, if p,, < 0.
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Minimum Cut Visualization for Project Selection

- Output: A — {s} from min-cut (A, B). Due to oo capacities, A must be feasible.
IA,Bl= > p,+ >, (=p)= >, P,— D b,
vEB:p,>0 veEA:p, <0 vip,, >0 vEA

- Min-Cut Capacity is a constant minus total revenue of chosen projects.
- Minimizing this is the same as maximizing revenue.
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Baseball Elimination
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