Network Flows

Lecture 18

Akshar Varma

7–8 August, 2023

CS3000 Algorithms and Data

Flow Networks

Max Flow-Min Cut Theorem

Reductions and Applications

1. Flow Networks

Flow Networks: N = (G, c, s, t)

- Directed graph G = (V, E); edge capacities $c : E \to \mathbb{R}^{\geq 0}$; source s, terminal t.
- · Models transportation networks: water pipelines, electric grids, road traffic, etc.
- Flow through an edge $f: E \to \mathbb{R}^{\geq 0}$. How much can "flow" through?
- What can stop flow from a source vertex s to a terminal vertex t?

Flow Conservation and Capacity Limits

- The capacities are constraints; can't sent more than the capacity. $f(e) \leq c(e), \forall e \in E$
- Cannot except 8 lanes of vehicles on a 4 lane road or more water than size of pipe.
- Also, if something enters a node except source and sink, it must leave. For all vertices $v \in V - \{s, t\}$ flow must satisfy: $\sum_{e=(u,v)} f(e) = \sum_{e=(v,w)} f(e)$.
- If you enter an *intersection*, you must leave; water coming in, must go out.

An example flow satisfying all conditions

Value of flow
$$|f| = \sum_{e=(s,u)} f(e) - \sum_{e=(w,s)} f(e)$$
. Total flow out of s .

Always equal to total flow *into* t by conservation of flow.

Maximum Flow possible in this network

Capacity of Cut

- A cut (A, B) separates source $s \in A$ and terminal $t \in B$.
- Capacity of cut ||A, B|| is sum of capacities of edges from A to B.

Capacity of (another) Cut

Minimum Cut Capacity

2. Max Flow-Min Cut Theorem

Max Flow-Min Cut Theorem and other useful facts

- Lemma: For any flow f and any cut (A, B), |f| equals net flow across (A, B).
- Weak duality: Any flow value is smaller than any cut capacity.
- Strong duality: Maximum flow is equal to the minimum cut capacity.
- Alternatively: If the |f| = ||A, B||, then it is the max flow and the min cut.
- If all capacities are integral $c: E \to \mathbb{N}^{\geq 0}$, then there is a max-flow with $f: E \to \mathbb{N}^{\geq 0}$.
- Maximum flows (and minimum cuts) can be computed in O(VE) time.
- Terminology: Edges "saturated" if f(e) = c(e), "avoided" if f(e) = 0.
- Flow can always be decomposed into cycles and paths.
- There is always a flow in which only one of f(u, v) and f(v, u) are non-zero.

3. Reductions and Applications

Reductions to Max Flow-Min Cut

- Max flow and min cut can solve a large variety of find the "best" problems.
- $\cdot N = (G, c, s, t)$ can represent many types of problems.
- In these cases finding max flow (value)/min cut (capacity) gives the solution.
- $\cdot\,$ We use the terminology "reduction" when we convert a problem to another.
- Intuitively: the problem difficulty reduces to that of something we know how to do.
- Flow network must be created so that its solution easily solves original problem.
- Requires converting flow (value)/cut (capacity) into original problem solution.
- Just a matter of interpreting appropriately; sometimes requires minimal conversion.
- Given a problem solution pair P, S, map it to a flow network: R(P) = (G, c, s, t).
- Our R(P) must be such that we can easily compute R'(f, |f|, (A, B), ||A, B||) = S.

Applications of Max Flow-Min Cut

We'll solve the following problems by reducing to a flow problem:

- Number of edge disjoint paths from s to t.
- Vertex capacities and number of vertex disjoint paths from s to t.
- Bipartite Matching.
- Tuple Selection (generalizes bipartite matching).
- Extending flow networks to cases where there are:
 - Multiple sources/sinks
 - Circulations with supplies, demands
 - Capacity lower bounds
- Minimum Cost Circulations
- Survey Design: for customers (constraints on products/customers/questions etc.)
- Airline Scheduling: schedule equipment and crew for most customer satisfaction.
- Image Segmentation: divide images into coherent/meaningful regions.
- Project Selection: choose projects to maximize revenue with prerequisite constraints.

- We want the maximum number of paths from s to t that are disjoint from each other.
- One example application of this is in communication networks.
- Edge disjoint paths: must have no edges in common between two paths.
- Cannot have same channel being used for the same conversation.
- How many conversations can keep happening simultaneously?
- \cdot On the flip side, how many links broken completely prevents s communicating to t?
- Vertex disjoint paths: must have no common vertices among any two paths.
- There may be limits on how much each cell tower can handle/transmit.
- How many cell towers needed for expected call volume?

- \cdot Assign capacity 1 to every edge in the graph. G^{\prime}
- Flow |f| will equal the number of edge disjoint paths k. Why?
- Each edge can contribute to at most one path since capacity 1. (Integrality!)
- + Find the paths by traversing from s to t using f(e)=1 edges.
- Remove paths found, and repeat until all paths found.

- What if graph was undirected?
- Make every edge $\{u,v\}$ into two antiparallel edges (u,v) and (v,u).
- $\cdot\,$ Reduction! Undirected graph edge disjoint paths \longrightarrow Digraph edge disjoint paths.

- A subset of edges $F \subseteq E$ disconnects t from s if each s t path has some $e \in F$.
- If we remove edges from F, then no path from s to t will remain.
- Network Connectivity: Find minimum sized F which disconnects t from s.
- · Menger's Theorem:

Max number of edge disjoint s - t paths = min size for $F \subseteq E$ to disconnect t from s.

- Our earlier reduction will also allow us to find out about network connectivity.
- In fact, the min cut capacity in that reduction is the size of the best $F \subseteq E$.
- Menger's theorem is a special case of max flow-min cut theorem; for capacity 1 edges.

- We've seen a lot about edge capacities, what if we want capacities on vertices c(v)?
- Do we need to come up with new algorithms, theorems, and so on?
- No! Come up with a reduction!
- Replace every vertex v with v_{in}, v_{out} , add (v_{in}, v_{out}) , s. t $c(v_{in}, v_{out}) = c(v)$.
- Every edge into v now goes into v_{in} and every edge out of v comes out of v_{out} .

- This reduction of making a vertex into an edge gives us more power (conceptually).
- $\cdot\,$ We can think in terms of vertex capacities in our reduction from this point.
- Vertex disjoint paths \rightarrow reduce using $c(v) = 1 \rightarrow v_{in}, v_{out}$ gives edge disjoint paths.

Vertex Capacities Reduction

Figure 11.1. Reducing vertex-disjoint paths in *G* to edge-disjoint paths in \overline{G} .

Figure from Jeff Erickson's book

- \cdot "Match" up vertices on one side of a bipartite graph with vertices on the other side.
- Formally: A subset of edges, such that no vertex in two edges.
- Maximum Matching: The largest matching that exists, as many pairs matched up.
- Original application: Matching doctors and hospitals based on their preferences.
- Doctors list hospitals they are willing to work at.
- Hospitals list doctors they're willing to hire.
- Bipartite graph: Doctors and hospitals are vertices. Edge iff vertices okay to match.
- Maximum bipartite matching: find largest matching in this graph.
- Match as many doctor-hospital pairs up.

Bipartite Matching Example

Reducing Bipartite Matching to Network Flow

- G = (V, E) where $V = L \cup R$ is union of two sets of vertices (left and right).
- Edges describe all pairings that are acceptable to both sides.
- We want to create N = (G', c, s, t) given G.
- N must have property that some of f, |f|, (A, B), ||A, B|| gives maximum matching.
- · Ideas?
- Vertices would be new s,t with all old vertices.
- + Every edge $\{l,r\}$ which existed becomes a directed edge (l,r) with ∞ capacity.
- Add edge (s, ℓ) for all $\ell \in L$ with capacity 1.
- Add edge (r,t) for all $r \in R$ with capacity 1.
- $\cdot \ N = \Big(G' = (V \cup \{s,t\}, \{(\ell,r), (s,\ell), (r,t)\}), c,s,t \Big)$
- There is matching of size |f| where |f| is the maximum flow value.
- Edges with $f(\ell,r) = 1$ give the actual matching edges.

Bipartite Matching Reduction Visualization

Flow to Matching

- Bipartite matching is special case of a more general "assignment" type problem.
- You now have many sets X_1, X_2, \ldots, X_d .
- Want to select as many d-tuples as possible subject to various capacity constraints:

1. $\forall i$, we have that $x \in X_i$ can appear in at most c(x) tuples.

2. $\forall i$, we have that $x \in X_i, y \in X_{i+1}$ can appear in at most c(x, y) tuples.

- The c(x), c(x,y) values are usually some small non-negative number or ∞ .
- Maximum matching: d = 2, each x has c(x) = 1, each pair x, y has $c(x, y) \in \{0, 1\}$.
- Reduction:
 - + Each $x \in X_i, \forall i$ has a vertex with capacity c(x). Special vertices s, t.
 - + Edges (s, w) for all $w \in X_1$ and (z, t) for all $z \in X_d$ with capacity 1.
 - + Edges (x, y) for $x \in X_i, y \in X_{i+1}$ for all i with capacity c(x, y).

Tuple Selection Flow Network

Figure 11.4. The flow network for a tuple selection problem.

Figure from Jeff Erickson's book

- \cdot *n* different classes, to be scheduled into one of *r* rooms, with *t* available time slots.
- At most one class in one room in one time slot.
- Classes cannot be split into different rooms or different time slots.
- $\cdot\,$ There are p proctors to oversee the exam. One proctor oversees one exam at a time.
- Proctors available at different time slots; each can proctor at most 5 exams.
- You know enrollment E[i] in class i via $E[1 \dots n]$; size S[j] of room j via $S[1 \dots r]$.
- Scheduling class i in room j requires that $E[i] \leq S[j]$.
- Availability of proctors for each time slot $A[k, \ell] \in \{0, 1\}$ known via $A[1 \dots t, 1 \dots p]$.
- Fits into tuple selection framework; 4 resources: classes, rooms, times, proctors.
- Any ideas on how this becomes a network?

How Would the Exam Scheduling Network Look Like?

Exam scheduling network flow formulation

- Create s, t and vertices for each class c_i , room r_j , time slot t_k and proctor p_ℓ .
- Add edges s to c_i with capacity 1. (each class holds one final)
- Add edges c_i to r_j of ∞ capacity iff $E[i] \leq S[j]$. (class vs. room size limits)
- Add edges r_j to t_k with capacity 1 for all j, k. (1 exam in room j in slot k).
- Add edges t_k to p_ℓ with capacity 1 iff $A[k, \ell] = 1$. (proctor's availability)
- Add edges p_{ℓ} to t with capacity 5. (can proctor at most 5 exams)

 \cdot We saw how to extend max flow to deal with vertex capacities. We can do more.

- What if there are multiple sources and multiple sinks?
- Create a super source and connect to each source; similarly use a super sink.

- Circulations with supplies and demands: each vertex has a demand $d(v) \in \mathbb{R}$.
- No special source or sink, products need to *circulate* in network.
- No concept of transport from source to a terminal vertex.
- Question: Is there a flow that satisfies circulation constraints?

Circulation Network with Supplies and Demands

- Now we have a d(v) for every vertex, not a capacity but a "demand".
- + d(v) > 0 is a supply node and d(v) < 0 is a demand node.
- Reduction: Create super sink, super source.
- For every d(v) < 0, connect sink to v with capacity -d(v) (positive).
- For d(v) > 0, connect v to sink with capacity d(v).
- + Circulation \iff max flow is $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$
- Same as checking if edges leaving s and entering t are saturated.

Reduction for Circulation Network with Supplies and Demands

Flow Lower Bounds

- What if flow must satisfy a lower bound at each edge: $\ell(e) \leq f(e) \leq c(e)$?
- We reduce this to circulations with demands.
- "Send" $\ell(e)$ units of flow through the edge and adjust the demands on vertices.
- · Start vertex creates and end vertex consumes.

Minimum Cost Circulations

- Everything until now, we've reduced to max flow.
- However, that is not the most broad framework of this kind.
- Circulations can have costs in addition to upper+lower bounds and demands.
- Let p(e) denote a price associated with sending flow through an edge.
- The total cost, which we want to minimize is $\sum_{e \in E} p(e) \cdot f(e).$
- Of course, this still has to be subject to flow conservation and capacity bounds.

$$\begin{split} \min \sum_{e \in E} p(e) \cdot f(e) \\ \text{s.t.} \\ \ell(e) \leq f(e) \leq u(e) \\ \sum_{e = (u,v) \in E} f(e) - \sum_{e = (v,w) \in E} f(e') = d(v) \end{split}$$

Capacity Bounds

Flow Conservation

- \cdot Design a survey to ask n consumers about m products.
- There must be one survey question per product.
- You can only survey consumer i about product j is they own it.
- Consumer i must be asked between c_i and c'_i questions.
- At least p_j and at most p'_j consumers need to be surveyed for product j.
- Is there a survey design that meets these requirements?
- If there is, design it, or correctly show why it isn't possible.

- We'll need lower bounds, so let us use circulations with lower bounds.
- We don't need any demands on vertices so all d(v) = 0.
- Create a s, t and vertices for each consumer and product.
- Add edge (i, j) if consumer i owns product j; set capacity bounds [0, 1].
- Add edges from s to consumer i; set capacity bounds $[c_i,c_i'].$
- Add edges from product j to t; set capacity bounds $[p_j, p'_j]$.
- Add an edge from t to s; set capacity bounds $[0,\infty]$.
- If there is an integral circulation, then survey possible.

Survey Design Network Visualization

- Need to manage allocation of equipment, crew, customer satisfaction and so on.
- These require scheduling where equipment and crew should be at all times.
- Toy setup: minimize the number of flight crews needed given these constraints:
- Set of k flights each day.
- Flight *i* leaves origin o_i at time s_i and reaches destination d_i at time f_i .

- For each flight i create two vertices u_i (start of flight) and v_i (end of flight).
- Add source s with demand -c, connect to each u_i with capacity bounds [0, 1].
- Add sink t with demand c, connected from each v_i with capacity bounds [0, 1].
- For each flight *i*, add edge (u_i, v_i) with capacity bounds [1, 1].
- If same crew can service flights $i \& j \text{ add } (v_i, u_j)$ with bounds [0, 1].

Airline Scheduling Network Visualization

Image Segmentation

- Separate image into foreground and background.
- The pixels becomes vertices and neighboring vertices are neighbors in graph.
- We want to have as few foreground pixels end up in the background and vice versa.
- + For pixel i_{r} let $a_i \geq 0, b_i \geq 0$ be foreground/background likelihood respectively.
- \cdot We also want some smoothness in the foreground/background separation.
- \cdot So we'll penalize our separation whenever i is a different side than most neighbors.
- We'll use $p_{ij} \geq 0$ as penalty for labeling pixel i and j differently.
- So we want:

$$\min \ \sum_{i \in B} a_i + \sum_{j \in A} b_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

Minimum Cut Modeling of Image Segmentation

- Create a node for each pixel; add antiparallel edges between neighbors.
- Source *s* acts as "foreground" side, sink *t* acts as "background".
- Capacities a_i from s to pixels, b_i from pixels to sink; p_{ij} on antiparallels.
- Find minimum cut; it will give separation into foreground and background segments.

Image Segmentation Minimum Cut Formulation

Minimum Cut Visualization for Image Segmentation

Project Selection

- Set of projects P with revenue p_v for project $v \in P$.
- Prerequisites E: $(v, w) \in E \implies w$ is a prerequisite for v.
- A subset of projects $A \subseteq P$ feasible if all prerequisites of $p \in A$ present in A.

• Given a sets P, E, choose a feasible subset of projects to maximize revenue.

Minimum Cut Formulation of Project Selection

- We'll model using minimum cut.
- \cdot Assign capacity ∞ to each prerequisite edge since they must *not* be cut.
- + Add (s, v) with capacity p_v if $p_v > 0$ and (v, t) with capacity p_v if $p_v < 0$.

Minimum Cut Visualization for Project Selection

• Output: $A - \{s\}$ from min-cut (A, B). Due to ∞ capacities, A must be feasible.

$$|A,B\| = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v) = \sum_{v: p_v > 0} p_v - \sum_{v \in A} p_v$$

- Min-Cut Capacity is a constant minus total revenue of chosen projects.
- Minimizing this is the same as maximizing revenue.

