Divide and Conquer: Order Statistics

Lecture 6

Akshar Varma
13th July, 2023
CS3000 Algorithms and Data

Order Statistics

Good and Bad Pivots

Median-of-medians: MoMs

Quicksort: straightforward, MoMs, [OptIONAL: randomized]

Two Data Structures: Priority Queues and Binary Search Trees

1. Order Statistics

"Chaos is a ladder."
-G. R. R. M.

Order Statistics

- Order statistics, as the name implies are statistical values that characterize order.
- You've heard of minimum and maximum; special cases of order statistics.
- The $k^{\text {th }}$ order statistic of a collection is the $k^{\text {th }}$ smallest value in it.
- Minimum is $k=1$, maximum is $k=n$ (where n is the size of the collection).
- You may also have heard of other special order statistics:
- Quartile: $0.25 n, 0.5 n, 0.75 n$
- Decile: $0.1 n, 0.2 n, 0.3 n, \ldots, 0.8 n, 0.9 n$
- Percentile: $0.1 n, 0.33 n, 0.68 n, 0.95 n, 0.99 n$, etc.
- Median: $\left\lfloor\frac{n}{2}\right\rfloor$
- This has extensive applications in statistics and inference.
- We'll see the $1^{\text {st }} / n^{\text {th }}$ order statistic (minimum/maximum) show up a lot in the future.

Finding order statistics: k-Selection

- $k=1$ (minimum) and $k=n$ (maximum) can both be found in $\Theta(n)$ time.
- Note: k-selection is $\Omega(n)$ since we must look at all the data.
- Using $\Theta(k)$ space, we can do k-selection in $\Theta(n)$ time.
- Without space usage, we can find minimums repeatedly and finish in $\Theta(k n)$ time.
- All of the above assumed unordered collection/list/array.
- If sorted, then k-selection is doable in $\Theta(1)$ for any value of k (just index into array).
- Spending $O(n \log n)$ on sorting will allow k-selection in $\Theta(1)$.
- Can we do selection without sorting and in $\Theta(n)$ for all k ?

Pivots in k-selection

- Pick a pivot element p. This can be any element, for example, the first one.
- Split array into everything $<p$ (Left), everything $=p$ (Middle), everything $>p$ (Right).
- This is $\Theta(n)$.
- Let ℓ, m, r be the sizes of Left, Middle and Right.
- If $k \leq \ell$ recurse in Left.
- If $\ell<k \leq \ell+m$, elements in the Middle, that is, p is the $k^{\text {th }}$ order statistic.
- Otherwise, recurse on Right, to find $k^{\prime \text { th }}$ order statistic where $k^{\prime}=k-\ell-m$.
- Runtime: $T(n)=T(\max (\ell, r))+\Theta(n)$.

2. Good and Bad Pivots

"Pivoting isn't Plan B; it is part of the process."

Good and Bad Pivots

- ℓ and r depend on how large p vs. other elements, that is, its order.
- If it is too small or too large, then $\max (\ell, r)$ may be $\Omega(n)$.
- In that case, the recursion does not give a $\Theta(n)$ runtime.
- So we need to ensure that p is close to the median.
- Pivoting needs $\Omega(n)$ time irrespective of p.
- So we only have $O(n)$ time to find a pivot p close to the median.

3. Median-of-medians: MoMs

"There are 2 hard problems in computer science: cache invalidation, naming things, and off-by-1 errors." - Leon Bambrick

Median of Medians Algorithm

- We don't need the exact median, only something close.
- Sort every group of 5 elements (sorting is constant time), $\Theta(n)$ such sortings.
- Recurse with these $\left\lfloor\frac{n}{5}\right\rfloor$ medians. When ≤ 5 elements return true median.
- Once a median-ish pivot is found, continue with your k-selection.

Median of Medians guarantee

- k-selection recurrence becomes $T(n)=T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+\Theta(n) \Longrightarrow T(n)=\Theta(n)$.

4. Quicksort: straightforward, MoMs, [OPTIONAL: randomized]

"There are 2 hard problems in computer science: cache invalidation, naming things, and off-by-1 errors." - Leon Bambrick

Quicksort

- Pivoting also suggests a sorting algorithm.
- Perform pivoting, recurse on left and right halves.
- Same problems as before wrt "good pivot". Worst-case complexity is $\Theta\left(n^{2}\right)$ (exercise).
- Resort to MoM to get a good pivot. Show that in this case runtime is $\Theta(n \log n)$.
- Alternative: Randomness!

Pick a random element as the pivot. Chance that it is bad is low.

- We won't do a proof, but this also gives a runtime of $\Theta(n \log n)$.
- In practice, due to large constants in MoM, randomized Quicksort is commonly used.

5. Two Data Structures: Priority Queues and Binary Search Trees

Two Data Structures: Priority Queues and Binary Search Trees

1. Priority Queues:

- Keeps track of things in order of "priority".
- $\Theta(1)$ access to the min or max priority element.
- Creation of data structure: $O(n)$
- Deletion $O(\log n)$

2. (Balanced) Binary Search Trees:

- Keeps track of things in a binary tree with the following property: Left subtree has smaller values and right subtree has larger values.
- Insertion, Deletion, Search, etc. are all $O(\log n)$ operations.
- Many other things can be done.
- Inorder, preorder, postorder traversals.
- Depth and height of nodes.
- Nodes can track subtree size to allow indexing and order statistics.

