
Divide and Conquer: Order Statistics
Lecture 6

Akshar Varma
13th July, 2023

CS3000 Algorithms and Data

Order Statistics

Good and Bad Pivots

Median-of-medians: MoMs

Quicksort: straightforward, MoMs, [OPTIONAL: randomized]

Two Data Structures: Priority Queues and Binary Search Trees

1. Order Statistics

“Chaos is a ladder.”
–G. R. R. M.

Order Statistics

• Order statistics, as the name implies are statistical values that characterize order.
• You’ve heard of minimum and maximum; special cases of order statistics.
• The 𝑘th order statistic of a collection is the 𝑘th smallest value in it.
• Minimum is 𝑘 = 1, maximum is 𝑘 = 𝑛 (where 𝑛 is the size of the collection).
• You may also have heard of other special order statistics:

• Quartile: 0.25𝑛, 0.5𝑛, 0.75𝑛
• Decile: 0.1𝑛, 0.2𝑛, 0.3𝑛, … , 0.8𝑛, 0.9𝑛
• Percentile: 0.1𝑛, 0.33𝑛, 0.68𝑛, 0.95𝑛, 0.99𝑛, etc.
• Median: ⌊ 𝑛

2 ⌋
• This has extensive applications in statistics and inference.
• We’ll see the 1st/𝑛th order statistic (minimum/maximum) show up a lot in the future.

1 / 7

Finding order statistics: 𝑘-Selection

• 𝑘 = 1 (minimum) and 𝑘 = 𝑛 (maximum) can both be found in Θ(𝑛) time.
• Note: 𝑘-selection is Ω(𝑛) since we must look at all the data.

• Using Θ(𝑘) space, we can do 𝑘-selection in Θ(𝑛) time.
• Without space usage, we can find minimums repeatedly and finish in Θ(𝑘𝑛) time.

• All of the above assumed unordered collection/list/array.
• If sorted, then 𝑘-selection is doable in Θ(1) for any value of 𝑘 (just index into array).

• Spending 𝑂(𝑛 log 𝑛) on sorting will allow 𝑘-selection in Θ(1).
• Can we do selection without sorting and in Θ(𝑛) for all 𝑘?

2 / 7

Pivots in 𝑘-selection

• Pick a pivot element 𝑝. This can be any element, for example, the first one.
• Split array into everything < 𝑝 (Left), everything = 𝑝 (Middle), everything > 𝑝 (Right).
• This is Θ(𝑛).
• Let ℓ, 𝑚, 𝑟 be the sizes of Left, Middle and Right.
• If 𝑘 ≤ ℓ recurse in Left.
• If ℓ < 𝑘 ≤ ℓ + 𝑚, elements in the Middle, that is, 𝑝 is the 𝑘th order statistic.
• Otherwise, recurse on Right, to find 𝑘′th order statistic where 𝑘′ = 𝑘 − ℓ − 𝑚.

• Runtime: 𝑇 (𝑛) = 𝑇 (max(ℓ, 𝑟)) + Θ(𝑛).

3 / 7

2. Good and Bad Pivots

“Pivoting isn’t Plan B; it is part of the process.”

Good and Bad Pivots

• ℓ and 𝑟 depend on how large 𝑝 vs. other elements, that is, its order.
• If it is too small or too large, then max(ℓ, 𝑟) may be Ω(𝑛).
• In that case, the recursion does not give a Θ(𝑛) runtime.
• So we need to ensure that 𝑝 is close to the median.
• Pivoting needs Ω(𝑛) time irrespective of 𝑝.
• So we only have 𝑂(𝑛) time to find a pivot 𝑝 close to the median.

4 / 7

3. Median-of-medians: MoMs

“There are 2 hard problems in computer science: cache invalidation, naming things, and
off-by-1 errors.” ― Leon Bambrick

Median of Medians Algorithm

• We don’t need the exact median, only something close.
• Sort every group of 5 elements (sorting is constant time), Θ(𝑛) such sortings.
• Recurse with these ⌊ 𝑛

5 ⌋ medians. When ≤ 5 elements return true median.
• Once a median-ish pivot is found, continue with your 𝑘-selection.

•

Median of Medians guarantee

• 𝑘-selection recurrence becomes 𝑇 (𝑛) = 𝑇 (𝑛
5) + 𝑇 (7𝑛

10) + Θ(𝑛) ⟹ 𝑇 (𝑛) = Θ(𝑛).
5 / 7

4. Quicksort: straightforward,
MoMs, [OPTIONAL: randomized]

“There are 2 hard problems in computer science: cache invalidation, naming things, and
off-by-1 errors.” ― Leon Bambrick

Quicksort

• Pivoting also suggests a sorting algorithm.
• Perform pivoting, recurse on left and right halves.
• Same problems as before wrt “good pivot”. Worst-case complexity is Θ(𝑛2) (exercise).
• Resort to MoM to get a good pivot. Show that in this case runtime is Θ(𝑛 log 𝑛).
• Alternative: Randomness!
Pick a random element as the pivot. Chance that it is bad is low.

• We won’t do a proof, but this also gives a runtime of Θ(𝑛 log 𝑛).
• In practice, due to large constants in MoM, randomized Quicksort is commonly used.

6 / 7

5. Two Data Structures: Priority
Queues and Binary Search Trees

Two Data Structures: Priority Queues and Binary Search Trees

1. PRIORITY QUEUES:
• Keeps track of things in order of “priority”.
• Θ(1) access to the min or max priority element.
• Creation of data structure: 𝑂(𝑛)
• Deletion 𝑂(log 𝑛)

2. (BALANCED) BINARY SEARCH TREES:
• Keeps track of things in a binary tree with the following property:
Left subtree has smaller values and right subtree has larger values.

• Insertion, Deletion, Search, etc. are all 𝑂(log 𝑛) operations.
• Many other things can be done.
• Inorder, preorder, postorder traversals.
• Depth and height of nodes.
• Nodes can track subtree size to allow indexing and order statistics.

7 / 7

