Divide and Conquer: Introduction

Lecture 5

Akshar Varma
11th July, 2023
CS3000 Algorithms and Data

Divide-And-Conquer Paradigm

Sorting: Mergesort

Comparison Sorting Lower Bound

Closest pair of points

Summary

1. Divide-And-Conquer Paradigm

Divide-And-Conquer Paradigm

Divide-and-conquer:

1. Divide up problem into several subproblems (of the same kind).
2. Solve (conquer) each subproblem recursively.
3. Combine solutions to subproblems into overall solution.

The most common usage (two examples today):

1. Divide problem of size n into 2 subproblems of size $n / 2$. $\longleftarrow O(n)$
2. Solve (conquer) two subproblems recursively.
3. Combine two solutions into overall solution. $\longleftarrow O(n)$

Consequence:

- Brute force: $O\left(n^{2}\right)$.
- Divide-and-conquer: $O(n \log n)$.

2. Sorting: Mergesort

The Sorting Problem

- Problem: Given a list L of n elements from a totally ordered universe, rearrange them in ascending order.
- Example: $[3,2,5,1,9] \longrightarrow[1,2,3,5,9]$
- Obvious applications:
- Organize an MP3 library (by artist/album name/title).
- Display (DuckDuckGo/Google) search results in order of relevance.
- List timeline/newsfeed items in reverse chronological order.
- Some problems become easier once elements are sorted:
- Identify statistical outliers.
- Binary search in a database.
- Remove duplicates in a mailing list.
- Many non-obvious applications: Closest pair of points, Counting Inversions, Convex hull, Interval scheduling/Interval partitioning, Scheduling to minimize maximum lateness, Minimum spanning trees (Kruskal's algorithm), etc.

Mergesort

- Split array into two halves.
- Recursively sort left half.
- Recursively sort right half.
- Merge the two sorted halves to make a whole sorted array.
- Example:
- Input
$[A, L, G, O, R, I, T, H, M, S]$
- Split into two halves
$[A, L, G, O, R\},\{I, T, H, M, S]$
- Sort left half
$[A, G, L, O, R],[I, T, H, M, S]$
- Sort right half
$[A, G, L, O, R],[H, I, M, S, T]$
- Merge results
$[A, G, H, I, L, M, O, R, S, T]$

Components of Mergesort

- When there's a single element, just return input as is. [Base case]
- Merging is the core of the algorithm.
- Goal: Given sorted lists A and B, merge them into a sorted list C .
- Example on board: $A=[2,3,5,6,8], B=[1,3,5,7,10]$
- General algorithm:
- Scan A and B from left to right.
- Compare A_{i} and B_{j}.
- If $A_{i} \leq B_{j}$, append A_{i} to C (remaining elements in B is at least as big).
- If $A_{i}>B_{j}$, append B_{j} to C (smaller than remaining elements in A).

Implementation of MERGESORT (L)

Input: List L of n elements from a totally ordered universe.
Output: The n elements of L in ascending order.

1 if $n=1$ then
2 return L
3 A $=$ Mergesort $\left(L\left[1 \ldots \frac{n}{2}\right]\right)$
$4 B=\operatorname{Mergesort}\left(L\left[\frac{n}{2} \ldots n\right]\right)$
$5 L=\operatorname{Merge}(A, B)$
6 return L

If there is only one element
then it is already sorted
$T(n / 2)$ time; recursive call
$T(n / 2)$ time; recursive call
$\Theta(n)$ time
Merged array is sorted L

(Recursive) Implementation of $\operatorname{MERGE}(A, B)$

Input: Two sorted lists A, B.
Output: \quad Single sorted list with values from both A and B.

```
if }|A|==0\mathrm{ then
    return B
    if }|B|==0\mathrm{ then
            return A
if }A[1]<B[1] the
    init = [A[1],B[1]]
    else
    init = [B[1],A[1]]
9 return init ++ Merge(A[2 ..], B[2 ..])
```

```
if A is empty
```

if A is empty
then just return B
then just return B
if B is empty
if B is empty
then just return A
then just return A
if first element of A is smaller
if first element of A is smaller
it should go first
it should go first
otherwise
otherwise
it goes second
it goes second
recurse on remaining elements

```
recurse on remaining elements
```


Time Complexity of Mergesort

Def: $T(n)=$ max number of comparisons to mergesort a list of length n.

Recurrence:

$$
T(n) \leq \begin{cases}0 & n=1 \tag{1}\\ T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right)+n & n>1\end{cases}
$$

Solution: $T(n)=O\left(n \log _{2} n\right)$

Proofs: We'll go over various ways to prove this. Inductive proofs, Recurrence trees, Master Theorem.

Recursion Tree Proof

Proposition: Assuming $n=2^{k}$ (a power of 2), $T(n)=n \log n$ if $T(n)$ satisfies the following recurrence.

$$
T(n)= \begin{cases}0 & n=1 \tag{2}\\ 2 T\left(\frac{n}{2}\right)+n & n>1\end{cases}
$$

Recursion Tree Based Proof

Proposition: Assuming $n=2^{k}$ (a power of 2), $T(n)=n \log n$ if $T(n)$ satisfies the following recurrence.

$$
T(n)= \begin{cases}0 & n=1 \tag{2}\\ 2 T\left(\frac{n}{2}\right)+n & n>1\end{cases}
$$

Proof: [by induction on n]

- Base case: when $n=1, T(1)=0=n \log _{2} n$
- Inductive hypothesis: assume $T(n)=n \log _{2} n$
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Inductive Proof

Proposition: $T(n) \leq n\lceil\log n\rceil$ if $T(n)$ satisfies the following recurrence.

$$
T(n) \leq \begin{cases}0 & n=1 \tag{1}\\ T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right)+n & n>1\end{cases}
$$

Proof: [by strong induction on n]

- Base case: when $n=1, T(1)=0 \leq n \log _{2} n$
- Define $n_{1}=\lfloor n / 2\rfloor$ and $n_{2}=\lceil n / 2\rceil$. Note that $n=n_{1}+n_{2}$
- Inductive hypothesis: Assume true for $1,2, \ldots, n-1$

$$
\begin{aligned}
T(n) \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n & =n_{1}\left\lceil\log _{2} n_{1}\right\rceil+n_{2}\left\lceil\log _{2} n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\log _{2} n_{2}\right\rceil+n_{2}\left\lceil\log _{2} n_{2}\right\rceil+n \\
& =n\left\lceil\log _{2} n_{2}\right\rceil+n \\
& =n\left(\left\lceil\log _{2} n\right\rceil-1\right)+n \quad\left(\because n_{2} \leq\left\lceil 2^{\left\lceil\log _{2} n\right\rceil} / 2\right\rceil\right) \\
& =n\left\lceil\log _{2} n\right\rceil
\end{aligned}
$$

3. Comparison Sorting Lower

Bound

Can we sort faster?

-We saw an $O(n \log n)$ algorithm. Can we do better?

- If not, can we show that any conceivable algorithm will be $\Omega(n \log n)$?
- Model of Computation: Comparison Trees
- Can access the elements only through pairwise comparisons.
- All other operations (control, data movement, etc.) are free.
- Cost Model: Number of Comparisons
- Is this realistic? Depends
- Yes, for most languages you'll see/know: Python, Java, C/C++
sort (${ }^{*}$, key $=$ None, reverse $=$ None)
This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially modified state).
- Yes, for most sorts you'll see: Mergesort, Heapsort, Quicksort
- No, for certain sorts that assume something about your data.

Comparison Tree (for three distinct elements a, b, and c)

each reachable leaf corresponds to one (and only one) ordering;

Lower Bound for Comparison Based Sorting

Theorem: Any deterministic comparison-based sorting algorithm must make $\Omega(n \log n)$ comparisons in the worst-case.

Proof: [Information theoretic]

- Assume array consists of n distinct values a_{1}, \ldots, a_{n}.
- Worst-case number of compares $=$ height h of comparison tree.
- Binary tree of height h can have at most 2^{h} leaves.
- n ! different possible orderings means we need n ! reachable leaves.

Lower Bound for Comparison Based Sorting

Theorem: Any deterministic comparison-based sorting algorithm must make $\Omega(n \log n)$ comparisons in the worst-case.

Proof: [Information theoretic]

- Assume array consists of n distinct values a_{1}, \ldots, a_{n}.
- Worst-case number of compares $=$ height h of comparison tree.
- Binary tree of height h can have at most 2^{h} leaves.
- n ! different possible orderings means we need n ! reachable leaves.

$$
\begin{aligned}
2^{h} & \geq \text { Number of leaves } \geq n! \\
\Longrightarrow h & \geq \log _{2}(n!) \\
\Longrightarrow h & \geq n \log _{2}(n)-n / \ln 2
\end{aligned}
$$

Summary of Divide-and-Conquer for Sorting

- We saw that Sorting can benefit from Divide-and-Conquer.
- Naively $O\left(n^{2}\right)$ time by comparing all pairs of elements.
- With Divide-and-Conquer, we reduce it to $O(n \log n)$ time.
- Any comparison based algorithm needs $\Omega(n \log n)$ time.
- So Divide-and-Conquer gets us to the "best" possible algorithm.

4. Closest pair of points

Closest Pair of Points

- Closest Pair Problem: Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

- Brute Force: Check all pairwise distances. In $\Theta\left(n^{2}\right)$ time.
- 1D version: Just sort all points are on a line. In $O(n \log n)$ time!
- Non-degeneracy assumption: Note that to avoid weird situations we assume that no two points have exactly the same x-coordinate.

2D Closest Pair - First Attempt

- Sort by x-coordinate and look at nearby points.
- Similarly, sort by y-coordinate and look at nearby points.

2D Closest Pair - First Attempt

- Sort by x-coordinate and look at nearby points.
- Similarly, sort by y-coordinate and look at nearby points.
- Obstacle: May miss a close pair that's not the closest in x or in y.

2D Closest Pair - Second Attempt

- Divide region into 4 quadrants.

2D Closest Pair - Second Attempt

- Divide region into 4 quadrants.
- Obstacle: Impossible to ensure $n / 4$ points in each piece. Without that, there is no real benefit to divide and conquer.

Divide and Conquer for 1D Closest Pair

- In 1D, we can sort the points. Allows solving in $O(n \log n)$ time.
- But sorting doesn't generalize to higher dimensions. Let's attempt a Divide and Conquer algorithm instead.
- Divide the points S into S_{1} and S_{2} of equal size such that $p<q$ for all $p \in S_{1}, q \in S_{2}$.

median m

- Recursively compute closest pair $\left(p_{1}, p_{2}\right)$ in S_{1} and $\left(q_{1}, q_{2}\right)$ in S_{2}.
- Let δ be the smallest distance yet: $\delta=\min \left(\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right)$
- The closest pair will either be $\left(p_{1}, p_{2}\right)$ or $\left(q_{1}, q_{2}\right)$ or a pair $\left(p_{3}, q_{3}\right)$ for $p_{3} \in S_{1}, q_{3} \in S_{2}$.

Divide and Conquer for 1D Closest Pair (continued)

- The closest pair will either be $\left(p_{1}, p_{2}\right)$ or $\left(q_{1}, q_{2}\right)$ or $\left(p_{3}, q_{3}\right)$.
- Note 1: p_{3} and q_{3} must be within δ of the median coordinate/line.
- Note 2: In 1D, p_{3} must be the rightmost point in S_{1} before m and q_{3} the leftmost point in S_{2} after m.
- Note 3: By the definition of δ, only one point of S_{1} can exist in the range $[m-\delta, m]$. Same holds for S_{2}, with the range $[m, m+\delta]$.
- In high dimensions: Note 1 holds, Note 2 doesn't, Note 3 doesn't.
- In high dimensions: There is a sparse structure in the 2δ band.

Implementation of 1D-CLOSEST-PAIR

Input: List S of 1D points
Output: \quad The closest pair of points in S and the distance between them.

1 if $|S|=1$ then
2 return (), $\delta=\infty$
3 if $|S|=2$ then
4 return $\left(p_{1}, p_{2}\right), \delta=\left|p_{1}-p_{2}\right|$
5 Let m be the median of S,
$6 S_{l}$ be points $<m$ and S_{r} be points $>m$
$\left(l_{1}, l_{2}\right), \delta_{l}=1 \mathrm{D}$-Closest-Pair $\left(S_{l}\right)$
$\left(r_{1}, r_{2}\right), \delta_{r}=1$ D-Closest-Pair $\left(S_{r}\right)$
$\left(l_{3}, r_{3}\right), \delta_{c}=$ closest pair; $l_{3} \in S_{l}, r_{3} \in S_{r}$ 10
11 return pair with $\delta=\min \left(\delta_{l}, \delta_{r}, \delta_{c}\right)$
if only single point
then no closest pair
if only two points
then they are the closest pair
$\Theta(n)$ time
$\Theta(n)$ time
$T(n / 2)$ time; recursive call
$T(n / 2)$ time; recursive call
$\Theta(n)$ time since we know from Note 2
that l_{3} is largest in S_{l} and r_{3} is smallest in S_{r}

Adapting 1D Algorithm to the 2D case

- Divide all points into two halves using a vertical line L.
- Recursively solve for closest pair on left and right sides of L.
- Find closest pair with one point on each side of L.

$$
\left[O\left(n^{2}\right)\right. \text { ?] }
$$

- Return best solution.

Find closest pair with one point on each side

- Via Note 1, it suffices to look at a 2δ band around line L.
- Sort the points in this band by their y coordinates.
- Sparsity Claim: For every point in this band, we only need to check distance to points within 7 positions in sorted order.

Find closest pair with one point on each side

- Via Note 1, it suffices to look at a 2δ band around line L.
- Sort the points in this band by their y coordinates.
- Sparsity Claim: For every point in this band, we only need to check distance to points within 7 positions in sorted order.

Proving the Sparsity Claim

Definition: Let s_{i} be the point with the $i^{\text {th }}$ smallest y-coordinate.
Claim: If $|j-i|>7$, the distance between s_{i} and s_{j} is at least δ.

Proof:

- Consider the 2δ-by- δ rectangle R in the band whose min y-coordinate is y-coordinate of s_{i}.
- Distance from s_{i} to any s_{j} above R is $\geq \delta$.
- Subdivide R into 8 squares each of side $\delta / 2$. The diagonals will have length $\delta / \sqrt{2}$.
- There can be at most 1 point per square.
- At most 7 other points can be in R.

Implementation of 2D-CLOSEST-PAIR (S)

Input: List S of 2D points
Output: \quad The closest pair of points in S and the distance between them.

```
1 if \(|S|=1\) then
2 return (), \(\delta=\infty\)
3 if \(|S|=2\) then
4 return \(\left(p_{1}, p_{2}\right), \delta=\left|p_{1}-p_{2}\right|\)
5 Find "median" line \(L\) in \(x\)-coordinates
6 split \(S\) into \(S_{l}<L, S_{r}>L\)
\(7\left(l_{1}, l_{2}\right), \delta_{l}=2 \mathrm{D}\)-Closest-Pair \(\left(S_{l}\right)\)
\(8\left(r_{1}, r_{2}\right), \delta_{r}=2 \mathrm{D}\)-Closest-Pair \(\left(S_{r}\right)\)
\(9 \delta=\min \left(\delta_{l}, \delta_{r}\right)\)
10 find \(2 \delta\) band around \(L\), sort by \(y\)-coordinate
11 Find closest crossing pair
12
if only single point
then no closest pair
if only two points
then they are the closest pair
?? time
\(T(n / 2)\) time; recursive call
\(T(n / 2)\) time; recursive call
\(O(n)\) time since we only
compare each point to \(<=7\) points
```

13 return closest pair found until now

Refining Closest Pair to $O(n \log n)$

- Note that we need $O(n \log n)$ time in lines 3 and 8 for sorting points, first by their x-coordinates and then by y-coordinates.
- This will cause the overall running time to be $O\left(n \log ^{2} n\right)$.
- Can we avoid this?
- Yes! Remember Mergesort?
- We could have the recursive calls return two sorted lists, one sorted by x-coordinate and the other sorted by y-coordinate.
- We could then merge these lists using the Merge part of Mergesort.
- Now the dominant time outside recursive calls is $O(n)$ and the overall time complexity would be $O(n \log n)$.

5. Summary

Summary

- General structure of Divide and Conquer
- Break problem into pieces (usually equally sized)
- Solve each piece (pieces can be "solved" by being discarded as in binary search, sometimes called Decrease-and-Conquer)
- Combine the solutions to get the overall solution
- Lots of cleverness combining (Closest Pair) and/or in breaking into subproblems (we'll see in Selection next time).
- Set up and solve recurrence to get complexity.

