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1. Divide-And-Conquer Paradigm

Blah



Divide-And-Conquer Paradigm

Divide-and-conquer:
1. Divide up problem into several subproblems (of the same kind).
2. Solve (conquer) each subproblem recursively.
3. Combine solutions to subproblems into overall solution.

The most common usage (two examples today):
1. Divide problem of size 𝑛 into 2 subproblems of size 𝑛/2. ⟵ 𝑂(𝑛)
2. Solve (conquer) two subproblems recursively.
3. Combine two solutions into overall solution. ⟵ 𝑂(𝑛)

Consequence:
• Brute force: 𝑂(𝑛2).
• Divide-and-conquer: 𝑂(𝑛 log 𝑛).
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2. Sorting: Mergesort



The Sorting Problem

• Problem: Given a list 𝐿 of 𝑛 elements from a totally ordered universe, rearrange
them in ascending order.

• Example: [3, 2, 5, 1, 9] ⟶ [1, 2, 3, 5, 9]
• Obvious applications:

– Organize an MP3 library (by artist/album name/title).
– Display (DuckDuckGo/Google) search results in order of relevance.
– List timeline/newsfeed items in reverse chronological order.

• Some problems become easier once elements are sorted:
– Identify statistical outliers.
– Binary search in a database.
– Remove duplicates in a mailing list.

• Many non-obvious applications: Closest pair of points, Counting Inversions, Convex
hull, Interval scheduling/Interval partitioning, Scheduling to minimize maximum
lateness, Minimum spanning trees (Kruskal’s algorithm), etc.
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Mergesort

• Split array into two halves.
• Recursively sort left half.
• Recursively sort right half.
• Merge the two sorted halves to make a whole sorted array.
• Example:

– Input
[𝐴, 𝐿, 𝐺, 𝑂, 𝑅, 𝐼, 𝑇 , 𝐻, 𝑀, 𝑆]

– Split into two halves
[𝐴, 𝐿, 𝐺, 𝑂, 𝑅}, {𝐼, 𝑇 , 𝐻, 𝑀, 𝑆]

– Sort left half
[𝐴, 𝐺, 𝐿, 𝑂, 𝑅], [𝐼, 𝑇 , 𝐻, 𝑀, 𝑆]

– Sort right half
[𝐴, 𝐺, 𝐿, 𝑂, 𝑅], [𝐻, 𝐼, 𝑀, 𝑆, 𝑇 ]

– Merge results
[𝐴, 𝐺, 𝐻, 𝐼, 𝐿, 𝑀, 𝑂, 𝑅, 𝑆, 𝑇 ]

3 / 25



Components of Mergesort

• When there’s a single element, just return input as is. [Base case]
• Merging is the core of the algorithm.
• Goal: Given sorted lists 𝐴 and 𝐵, merge them into a sorted list C.
• Example on board: 𝐴 = [2, 3, 5, 6, 8], 𝐵 = [1, 3, 5, 7, 10]

• General algorithm:
• Scan A and B from left to right.
• Compare 𝐴𝑖 and 𝐵𝑗.
• If 𝐴𝑖 ≤ 𝐵𝑗, append 𝐴𝑖 to 𝐶 (remaining elements in 𝐵 is at least as big).
• If 𝐴𝑖 > 𝐵𝑗, append 𝐵𝑗 to 𝐶 (smaller than remaining elements in 𝐴).
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Implementation of MERGESORT(𝐿)

Input: List 𝐿 of 𝑛 elements from a totally ordered universe.
Output: The 𝑛 elements of 𝐿 in ascending order.

1 if 𝑛 = 1 then If there is only one element
2 return L then it is already sorted
3 A = Mergesort(L[1 . . 𝑛

2 ]) 𝑇 (𝑛/2) time; recursive call
4 B = Mergesort(L[ 𝑛

2 . .𝑛]) 𝑇 (𝑛/2) time; recursive call
5 L = Merge(A,B) Θ(𝑛) time
6 return L Merged array is sorted L
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(Recursive) Implementation of MERGE(𝐴, 𝐵)

Input: Two sorted lists 𝐴, 𝐵.
Output: Single sorted list with values from both 𝐴 and 𝐵.

1 if |𝐴| == 0 then if A is empty
2 return 𝐵 then just return B
3 if |𝐵| == 0 then if B is empty
4 return 𝐴 then just return A
5 if 𝐴[1] < 𝐵[1] then if first element of A is smaller
6 init = [𝐴[1], 𝐵[1]] it should go first
7 else otherwise
8 init = [𝐵[1], 𝐴[1]] it goes second
9 return init ++ Merge(𝐴[2 . .], 𝐵[2 . .]) recurse on remaining elements
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Time Complexity of Mergesort

Def: 𝑇 (𝑛) = max number of comparisons to mergesort a list of length 𝑛.

Recurrence:

𝑇 (𝑛) ≤ {0 𝑛 = 1
𝑇 (⌊ 𝑛

2 ⌋) + 𝑇 (⌈ 𝑛
2 ⌉) + 𝑛 𝑛 > 1

(1)

Solution: 𝑇 (𝑛) = 𝑂(𝑛 log2 𝑛)

Proofs: We’ll go over various ways to prove this. Inductive proofs, Recurrence trees,
Master Theorem.
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Recursion Tree Proof (𝑛 = 2𝑘)

Proposition: Assuming 𝑛 = 2𝑘 (a power of 2), 𝑇 (𝑛) = 𝑛 log 𝑛 if 𝑇 (𝑛) satisfies the following
recurrence.

𝑇 (𝑛) = {0 𝑛 = 1
2𝑇 ( 𝑛

2 ) + 𝑛 𝑛 > 1
(2)

Recursion Tree Based Proof
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Inductive Proof (𝑛 = 2𝑘)

Proposition: Assuming 𝑛 = 2𝑘 (a power of 2), 𝑇 (𝑛) = 𝑛 log 𝑛 if 𝑇 (𝑛) satisfies the following
recurrence.

𝑇 (𝑛) = {0 𝑛 = 1
2𝑇 ( 𝑛

2 ) + 𝑛 𝑛 > 1
(2)

Proof: [by induction on n]
• Base case: when 𝑛 = 1, 𝑇 (1) = 0 = 𝑛 log2 𝑛
• Inductive hypothesis: assume 𝑇 (𝑛) = 𝑛 log2 𝑛
• Goal: show that 𝑇 (2𝑛) = 2𝑛 log2(2𝑛)

𝑇 (2𝑛) = 2𝑇 (𝑛) + 2𝑛
= 2𝑛 log2 𝑛 + 2𝑛
= 2𝑛(log2(2𝑛) − 1) + 2𝑛
= 2𝑛 log2(2𝑛)
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Inductive Proof (any 𝑛)

Proposition: 𝑇 (𝑛) ≤ 𝑛⌈log 𝑛⌉ if 𝑇 (𝑛) satisfies the following recurrence.

𝑇 (𝑛) ≤ {0 𝑛 = 1
𝑇 (⌊ 𝑛

2 ⌋) + 𝑇 (⌈ 𝑛
2 ⌉) + 𝑛 𝑛 > 1

(1)

Proof: [by strong induction on n]
• Base case: when 𝑛 = 1, 𝑇 (1) = 0 ≤ 𝑛 log2 𝑛
• Define 𝑛1 = ⌊𝑛/2⌋ and 𝑛2 = ⌈𝑛/2⌉. Note that 𝑛 = 𝑛1 + 𝑛2

• Inductive hypothesis: Assume true for 1, 2, … , 𝑛 − 1
𝑇 (𝑛) ≤ 𝑇 (𝑛1) + 𝑇 (𝑛2) + 𝑛 = 𝑛1⌈log2 𝑛1⌉ + 𝑛2⌈log2 𝑛2⌉ + 𝑛

≤ 𝑛1⌈log2 𝑛2⌉ + 𝑛2⌈log2 𝑛2⌉ + 𝑛
= 𝑛⌈log2 𝑛2⌉ + 𝑛
= 𝑛(⌈log2 𝑛⌉ − 1) + 𝑛 (∵𝑛2 ≤ ⌈2⌈log2 𝑛⌉/2⌉)
= 𝑛⌈log2 𝑛⌉
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3. Comparison Sorting Lower
Bound



Can we sort faster?

• We saw an 𝑂(𝑛 log 𝑛) algorithm. Can we do better?
• If not, can we show that any conceivable algorithm will be Ω(𝑛 log 𝑛)?
• Model of Computation: Comparison Trees

– Can access the elements only through pairwise comparisons.
– All other operations (control, data movement, etc.) are free.

• Cost Model: Number of Comparisons
• Is this realistic? Depends

– Yes, for most languages you’ll see/know: Python, Java, C/C++

– Yes, for most sorts you’ll see: Mergesort, Heapsort, Quicksort
– No, for certain sorts that assume something about your data.
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Comparison Tree (for three distinct elements a, b, and c)
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Lower Bound for Comparison Based Sorting

Theorem: Any deterministic comparison-based sorting algorithm must make Ω(𝑛 log 𝑛)
comparisons in the worst-case.

Proof: [Information theoretic]

• Assume array consists of 𝑛 distinct values 𝑎1, … , 𝑎𝑛.
• Worst-case number of compares = height ℎ of comparison tree.
• Binary tree of height ℎ can have at most 2ℎ leaves.
• 𝑛! different possible orderings means we need 𝑛! reachable leaves.
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• Binary tree of height ℎ can have at most 2ℎ leaves.
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2ℎ ≥ Number of leaves ≥ 𝑛!
⟹ ℎ ≥ log2(𝑛!)
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Summary of Divide-and-Conquer for Sorting

• We saw that Sorting can benefit from Divide-and-Conquer.

• Naively 𝑂(𝑛2) time by comparing all pairs of elements.

• With Divide-and-Conquer, we reduce it to 𝑂(𝑛 log 𝑛) time.

• Any comparison based algorithm needs Ω(𝑛 log 𝑛) time.

• So Divide-and-Conquer gets us to the “best” possible algorithm.
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4. Closest pair of points



Closest Pair of Points

• Closest Pair Problem: Given 𝑛 points in the plane, find a pair of points with the
smallest Euclidean distance between them.

• Brute Force: Check all pairwise distances. In Θ(𝑛2) time.

• 1D version: Just sort all points are on a line. In 𝑂(𝑛 log 𝑛) time!

• Non-degeneracy assumption: Note that to avoid weird situations we assume that no
two points have exactly the same 𝑥-coordinate.
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2D Closest Pair - First Attempt

• Sort by 𝑥-coordinate and look at nearby points.
• Similarly, sort by 𝑦-coordinate and look at nearby points.

• Obstacle: May miss a close pair that’s not the closest in 𝑥 or in 𝑦.
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2D Closest Pair - Second Attempt

• Divide region into 4 quadrants.

• Obstacle: Impossible to ensure 𝑛/4 points in each piece. Without that, there is no
real benefit to divide and conquer.
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Divide and Conquer for 1D Closest Pair

• In 1D, we can sort the points. Allows solving in 𝑂(𝑛 log 𝑛) time.
• But sorting doesn’t generalize to higher dimensions. Let’s attempt a Divide and
Conquer algorithm instead.

• Divide the points 𝑆 into 𝑆1 and 𝑆2 of equal size such that 𝑝 < 𝑞 for all 𝑝 ∈ 𝑆1, 𝑞 ∈ 𝑆2.

• Recursively compute closest pair (𝑝1, 𝑝2) in 𝑆1 and (𝑞1, 𝑞2) in 𝑆2.
• Let 𝛿 be the smallest distance yet: 𝛿 = min(|𝑝1 − 𝑝2|, |𝑞1 − 𝑞2|)
• The closest pair will either be (𝑝1, 𝑝2) or (𝑞1, 𝑞2) or a pair (𝑝3, 𝑞3) for 𝑝3 ∈ 𝑆1, 𝑞3 ∈ 𝑆2.
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Divide and Conquer for 1D Closest Pair (continued)

• The closest pair will either be (𝑝1, 𝑝2) or (𝑞1, 𝑞2) or (𝑝3, 𝑞3).
• Note 1: 𝑝3 and 𝑞3 must be within 𝛿 of the median coordinate/line.
• Note 2: In 1D, 𝑝3 must be the rightmost point in 𝑆1 before 𝑚 and 𝑞3 the leftmost point
in 𝑆2 after 𝑚.

• Note 3: By the definition of 𝛿, only one point of 𝑆1 can exist in the range [𝑚 − 𝛿, 𝑚].
Same holds for 𝑆2, with the range [𝑚, 𝑚 + 𝛿].

• In high dimensions: Note 1 holds, Note 2 doesn’t, Note 3 doesn’t.
• In high dimensions: There is a sparse structure in the 2𝛿 band.
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Implementation of 1D-CLOSEST-PAIR

Input: List 𝑆 of 1D points
Output: The closest pair of points in 𝑆 and the distance between them.

1 if |𝑆| = 1 then if only single point
2 return (), 𝛿 = ∞ then no closest pair
3 if |𝑆| = 2 then if only two points
4 return (𝑝1, 𝑝2), 𝛿 = |𝑝1 − 𝑝2| then they are the closest pair
5 Let 𝑚 be the median of 𝑆, Θ(𝑛) time
6 𝑆𝑙 be points < 𝑚 and 𝑆𝑟 be points > 𝑚 Θ(𝑛) time
7 (𝑙1, 𝑙2), 𝛿𝑙 = 1D-Closest-Pair(𝑆𝑙) 𝑇 (𝑛/2) time; recursive call
8 (𝑟1, 𝑟2), 𝛿𝑟 = 1D-Closest-Pair(𝑆𝑟) 𝑇 (𝑛/2) time; recursive call
9 (𝑙3, 𝑟3), 𝛿𝑐 = closest pair; 𝑙3 ∈ 𝑆𝑙, 𝑟3 ∈ 𝑆𝑟 Θ(𝑛) time since we know from Note 2
10 that 𝑙3 is largest in 𝑆𝑙 and 𝑟3 is smallest in 𝑆𝑟
11 return pair with 𝛿 = min(𝛿𝑙, 𝛿𝑟, 𝛿𝑐)

19 / 25



Adapting 1D Algorithm to the 2D case

• Divide all points into two halves using a vertical line 𝐿.
• Recursively solve for closest pair on left and right sides of 𝐿.
• Find closest pair with one point on each side of 𝐿. [𝑂(𝑛2)?]
• Return best solution.
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Find closest pair with one point on each side

• Via Note 1, it suffices to look at a 2𝛿 band around line 𝐿.
• Sort the points in this band by their 𝑦 coordinates.
• Sparsity Claim: For every point in this band, we only need to check distance to points
within 7 positions in sorted order.
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Proving the Sparsity Claim

Definition: Let 𝑠𝑖 be the point with the 𝑖th smallest 𝑦-coordinate.

Claim: If |𝑗 − 𝑖| > 7, the distance between 𝑠𝑖 and 𝑠𝑗 is at least 𝛿.

Proof:
• Consider the 2𝛿-by-𝛿 rectangle 𝑅 in the band whose min

𝑦-coordinate is 𝑦-coordinate of 𝑠𝑖.
• Distance from 𝑠𝑖 to any 𝑠𝑗 above 𝑅 is ≥ 𝛿.
• Subdivide 𝑅 into 8 squares each of side 𝛿/2. The
diagonals will have length 𝛿/

√
2.

• There can be at most 1 point per square.
• At most 7 other points can be in 𝑅.
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Implementation of 2D-CLOSEST-PAIR(𝑆)

Input: List 𝑆 of 2D points
Output: The closest pair of points in 𝑆 and the distance between them.

1 if |𝑆| = 1 then if only single point
2 return (), 𝛿 = ∞ then no closest pair
3 if |𝑆| = 2 then if only two points
4 return (𝑝1, 𝑝2), 𝛿 = |𝑝1 − 𝑝2| then they are the closest pair
5 Find “median” line 𝐿 in 𝑥-coordinates ?? time
6 split 𝑆 into 𝑆𝑙 < 𝐿, 𝑆𝑟 > 𝐿
7 (𝑙1, 𝑙2), 𝛿𝑙 = 2D-Closest-Pair(𝑆𝑙) 𝑇 (𝑛/2) time; recursive call
8 (𝑟1, 𝑟2), 𝛿𝑟 = 2D-Closest-Pair(𝑆𝑟) 𝑇 (𝑛/2) time; recursive call
9 𝛿 = min(𝛿𝑙, 𝛿𝑟)
10 find 2𝛿 band around 𝐿, sort by 𝑦-coordinate
11 Find closest crossing pair 𝑂(𝑛) time since we only
12 compare each point to <= 7 points
13 return closest pair found until now
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Refining Closest Pair to 𝑂(𝑛 log 𝑛)

• Note that we need 𝑂(𝑛 log 𝑛) time in lines 3 and 8 for sorting points, first by their
𝑥-coordinates and then by 𝑦-coordinates.

• This will cause the overall running time to be 𝑂(𝑛 log2 𝑛). (Verify!)
• Can we avoid this?

• Yes! Remember Mergesort?
• We could have the recursive calls return two sorted lists, one sorted by 𝑥-coordinate
and the other sorted by 𝑦-coordinate.

• We could then merge these lists using the Merge part of Mergesort.
• Now the dominant time outside recursive calls is 𝑂(𝑛) and the overall time
complexity would be 𝑂(𝑛 log 𝑛). (Verify!)
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5. Summary



Summary

• General structure of Divide and Conquer
• Break problem into pieces (usually equally sized)
• Solve each piece (pieces can be ”solved” by being discarded as in binary search,
sometimes called Decrease-and-Conquer)

• Combine the solutions to get the overall solution

• Lots of cleverness combining (Closest Pair) and/or in breaking into subproblems
(we’ll see in Selection next time).

• Set up and solve recurrence to get complexity.
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