Divide and Conquer: Introduction

Lecture 5

Akshar Varma 11th July, 2023

CS3000 Algorithms and Data

Divide-And-Conquer Paradigm

Sorting: Mergesort

Comparison Sorting Lower Bound

Closest pair of points

Summary

1. Divide-And-Conquer Paradigm

Blah

Divide-and-conquer:

- 1. Divide up problem into several subproblems (of the same kind).
- 2. Solve (conquer) each subproblem recursively.
- 3. Combine solutions to subproblems into overall solution.

The most common usage (two examples today):

- 1. Divide problem of size n into 2 subproblems of size $n/2. \longleftarrow O(n)$
- 2. Solve (conquer) two subproblems recursively.
- 3. Combine two solutions into overall solution. $\longleftarrow O(n)$

Consequence:

- Brute force: $O(n^2)$.
- Divide-and-conquer: $O(n \log n)$.

2. Sorting: Mergesort

The Sorting Problem

- **Problem:** Given a list *L* of *n* elements from a totally ordered universe, rearrange them in ascending order.
- Example: $[3, 2, 5, 1, 9] \longrightarrow [1, 2, 3, 5, 9]$
- Obvious applications:
 - Organize an MP3 library (by artist/album name/title).
 - Display (DuckDuckGo/Google) search results in order of relevance.
 - List timeline/newsfeed items in reverse chronological order.
- Some problems become easier once elements are sorted:
 - Identify statistical outliers.
 - Binary search in a database.
 - Remove duplicates in a mailing list.
- *Many non-obvious applications:* Closest pair of points, Counting Inversions, Convex hull, Interval scheduling/Interval partitioning, Scheduling to minimize maximum lateness, Minimum spanning trees (Kruskal's algorithm), etc.

Mergesort

- Split array into two halves.
- Recursively sort left half.
- Recursively sort right half.
- $\cdot\,$ Merge the two sorted halves to make a whole sorted array.
- Example:
 - Input
 - $\left[A,L,G,O,R,I,T,H,M,S\right]$
 - Split into two halves $[A, L, G, O, R\}, \{I, T, H, M, S\}$
 - Sort left half [A,G,L,O,R], [I,T,H,M,S]
 - Sort right half
 - [A,G,L,O,R], [H,I,M,S,T]
 - Merge results [A, G, H, I, L, M, O, R, S, T]

Components of Mergesort

- When there's a single element, just return input as is. [Base case]
- Merging is the core of the algorithm.
- Goal: Given sorted lists A and B, merge them into a sorted list C.
- Example on board: A = [2, 3, 5, 6, 8], B = [1, 3, 5, 7, 10]

- General algorithm:
 - Scan A and B from left to right.
 - Compare A_i and B_j .
 - If $A_i \leq B_j$, append A_i to C (remaining elements in B is at least as big).
 - If $A_i > B_j$, append B_j to C (smaller than remaining elements in A).

Input: List L of n elements from a totally ordered universe.Output: The n elements of L in ascending order.

- 1 if n = 1 then
- 2 return L
- 3 A = Mergesort($L[1 . . \frac{n}{2}]$)
- 4 $B = Mergesort(L[\frac{n}{2} ... n])$
- 5 L = Merge(A, B)
- 6 return L

If there is only one element then it is already sorted T(n/2) time; recursive call $\Theta(n)$ time Merged array is sorted L **Input:** Two sorted lists *A*, *B*.

Output: Single sorted list with values from both *A* and *B*.

1 if |A| == 0 then 2 return B 3 if |B| == 0 then 4 return A 5 if A[1] < B[1] then 6 init = [A[1], B[1]]7 else 8 init = [B[1], A[1]]9 return init ++ Merge(A[2..], B[2..]) if A is empty then just return B if B is empty then just return A if first element of A is smaller it should go first otherwise it goes second recurse on remaining elements Def: $T(n) = \max$ number of comparisons to mergesort a list of length n.

Recurrence:

$$T(n) \leq \begin{cases} 0 & n = 1\\ T\left(\lfloor \frac{n}{2} \rfloor\right) + T\left(\lceil \frac{n}{2} \rceil\right) + n & n > 1 \end{cases}$$
(1)

Solution: $T(n) = O(n \log_2 n)$

Proofs: We'll go over various ways to prove this. Inductive proofs, Recurrence trees, Master Theorem.

Recursion Tree Proof

$$(n = 2^k)$$

Proposition: Assuming $n = 2^k$ (a power of 2), $T(n) = n \log n$ if T(n) satisfies the following recurrence.

$$T(n) = \begin{cases} 0 & n = 1\\ 2T\left(\frac{n}{2}\right) + n & n > 1 \end{cases}$$
(2)

Recursion Tree Based Proof

Inductive Proof

$$(n = 2^k)$$

Proposition: Assuming $n = 2^k$ (a power of 2), $T(n) = n \log n$ if T(n) satisfies the following recurrence.

$$T(n) = \begin{cases} 0 & n = 1\\ 2T\left(\frac{n}{2}\right) + n & n > 1 \end{cases}$$
(2)

Proof: [by induction on n]

- + Base case: when $n=1, T(1)=0=n\log_2 n$
- + Inductive hypothesis: assume $T(n) = n \log_2 n$
- + Goal: show that $T(2n) = 2n \log_2(2n)$

$$\begin{split} T(2n) &= 2T(n) + 2n \\ &= 2n \log_2 n + 2n \\ &= 2n (\log_2(2n) - 1) + 2n \\ &= 2n \log_2(2n) \end{split}$$

Inductive Proof

(any n)

Proposition: $T(n) \le n \lceil \log n \rceil$ if T(n) satisfies the following recurrence.

$$T(n) \leq \begin{cases} 0 & n = 1\\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n & n > 1 \end{cases}$$
(1)

Proof: [by strong induction on n]

- Base case: when $n = 1, T(1) = 0 \le n \log_2 n$
- + Define $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$. Note that $n = n_1 + n_2$
- Inductive hypothesis: Assume true for $1,2,\ldots,n-1$

$$\begin{split} T(n) &\leq T(n_1) + T(n_2) + n = n_1 \lceil \log_2 n_1 \rceil + n_2 \lceil \log_2 n_2 \rceil + n \\ &\leq n_1 \lceil \log_2 n_2 \rceil + n_2 \lceil \log_2 n_2 \rceil + n \\ &= n \lceil \log_2 n_2 \rceil + n \\ &= n (\lceil \log_2 n \rceil - 1) + n \qquad (\because n_2 \leq \lceil 2^{\lceil \log_2 n \rceil}/2 \rceil) \\ &= n \lceil \log_2 n \rceil \end{split}$$

3. Comparison Sorting Lower Bound

Can we sort faster?

- We saw an $O(n \log n)$ algorithm. Can we do better?
- If not, can we show that any conceivable algorithm will be $\Omega(n \log n)$?
- Model of Computation: Comparison Trees
 - Can access the elements only through pairwise comparisons.
 - All other operations (control, data movement, etc.) are free.
- Cost Model: Number of Comparisons
- Is this realistic? Depends
 - Yes, for most languages you'll see/know: Python, Java, C/C++

sort(*, key=None, reverse=None)

This method **sort**s the list in place, using only < comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially modified state).

- Yes, for most sorts you'll see: Mergesort, Heapsort, Quicksort
- No, for certain sorts that assume something about your data.

Comparison Tree (for three distinct elements a, b, and c)

Lower Bound for Comparison Based Sorting

Theorem: Any deterministic comparison-based sorting algorithm must make $\Omega(n \log n)$ comparisons in the worst-case.

Proof: [Information theoretic]

- Assume array consists of n distinct values a_1, \ldots, a_n .
- Worst-case number of compares = height h of comparison tree.
- Binary tree of height h can have at most 2^h leaves.
- \cdot n! different possible orderings means we need n! reachable leaves.

Lower Bound for Comparison Based Sorting

Theorem: Any deterministic comparison-based sorting algorithm must make $\Omega(n \log n)$ comparisons in the worst-case.

Proof: [Information theoretic]

- Assume array consists of n distinct values a_1, \ldots, a_n .
- Worst-case number of compares = height h of comparison tree.
- Binary tree of height h can have at most 2^h leaves.
- \cdot n! different possible orderings means we need n! reachable leaves.

$$\begin{split} 2^h &\geq \text{Number of leaves} \geq n! \\ &\implies h \geq \log_2(n!) \\ &\implies h \geq n \log_2(n) - n / \ln 2 \end{split}$$

- We saw that Sorting can benefit from Divide-and-Conquer.
- Naively $O(n^2)$ time by comparing all pairs of elements.
- With Divide-and-Conquer, we reduce it to $O(n \log n)$ time.
- Any comparison based algorithm needs $\Omega(n \log n)$ time.
- So Divide-and-Conquer gets us to the "best" possible algorithm.

4. Closest pair of points

Closest Pair of Points

• *Closest Pair Problem:* Given *n* points in the plane, find a pair of points with the smallest Euclidean distance between them.

- + Brute Force: Check all pairwise distances. In $\Theta(n^2)$ time.
- + 1D version: Just sort all points are on a line. In $O(n \log n)$ time!
- *Non-degeneracy assumption:* Note that to avoid weird situations we assume that no two points have exactly the same *x*-coordinate.

2D Closest Pair - First Attempt

- Sort by x-coordinate and look at nearby points.
- Similarly, sort by y-coordinate and look at nearby points.

2D Closest Pair - First Attempt

- Sort by *x*-coordinate and look at nearby points.
- Similarly, sort by y-coordinate and look at nearby points.
- Obstacle: May miss a close pair that's not the closest in x or in y.

2D Closest Pair - Second Attempt

• Divide region into 4 quadrants.

2D Closest Pair - Second Attempt

- Divide region into 4 quadrants.
- Obstacle: Impossible to ensure n/4 points in each piece. Without that, there is no real benefit to divide and conquer.

Divide and Conquer for 1D Closest Pair

- + In 1D, we can sort the points. Allows solving in $O(n\log n)$ time.
- But sorting doesn't generalize to higher dimensions. Let's attempt a Divide and Conquer algorithm instead.
- Divide the points S into S_1 and S_2 of equal size such that p < q for all $p \in S_1, q \in S_2$.

- + Recursively compute closest pair $(p_1,p_2) \mbox{ in } S_1 \mbox{ and } (q_1,q_2) \mbox{ in } S_2.$
- + Let δ be the smallest distance yet: $\delta = \min(|p_1 p_2|, |q_1 q_2|)$
- The closest pair will either be (p_1, p_2) or (q_1, q_2) or a pair (p_3, q_3) for $p_3 \in S_1, q_3 \in S_2$.

Divide and Conquer for 1D Closest Pair (continued)

- The closest pair will either be (p_1,p_2) or (q_1,q_2) or $(p_3,q_3).$
- Note 1: p_3 and q_3 must be within δ of the median coordinate/line.
- Note 2: In 1D, p_3 must be the rightmost point in S_1 before m and q_3 the leftmost point in S_2 after m.
- Note 3: By the definition of δ , only one point of S_1 can exist in the range $[m \delta, m]$. Same holds for S_2 , with the range $[m, m + \delta]$.
- In high dimensions: Note 1 holds, Note 2 doesn't, Note 3 doesn't.
- In high dimensions: There is a sparse structure in the 2δ band.

Input: List S of 1D pointsOutput: The closest pair of points in S and the distance between them.

1 if |S| = 1 then 2 return (), $\delta = \infty$ 3 if |S| = 2 then return $(p_1, p_2), \delta = |p_1 - p_2|$ 4 5 Let m be the median of S. 6 S_i be points < m and S_r be points > m7 $(l_1, l_2), \delta_l = 1D$ -Closest-Pair (S_l) 8 $(r_1, r_2), \delta_r = 1D$ -Closest-Pair (S_r) $(l_3, r_3), \delta_c$ = closest pair; $l_3 \in S_l, r_3 \in S_r$ 10

11 return pair with $\delta = \min(\delta_l, \delta_r, \delta_c)$

if only single point then no closest pair if only two points then they are the closest pair $\Theta(n)$ time $\Theta(n)$ time T(n/2) time; recursive call T(n/2) time; recursive call $\Theta(n)$ time since we know from *Note 2* that l_2 is largest in S_l and r_2 is smallest in S_m

Adapting 1D Algorithm to the 2D case

- Divide all points into two halves using a vertical line *L*.
- Recursively solve for closest pair on left and right sides of *L*.
- Find closest pair with one point on each side of *L*.
- Return best solution.

 $[O(n^2)?]$

Find closest pair with one point on each side

- $\cdot\,$ Via Note 1, it suffices to look at a 2δ band around line L.
- \cdot Sort the points in this band by their y coordinates.
- *Sparsity Claim:* For every point in this band, we only need to check distance to points within 7 positions in sorted order.

Find closest pair with one point on each side

- $\cdot\,$ Via Note 1, it suffices to look at a 2δ band around line L.
- Sort the points in this band by their y coordinates.
- *Sparsity Claim:* For every point in this band, we only need to check distance to points within 7 positions in sorted order.

Proving the Sparsity Claim

Definition: Let s_i be the point with the i^{th} smallest y-coordinate.

Claim: If |j - i| > 7, the distance between s_i and s_j is at least δ .

Proof:

- Consider the 2δ -by- δ rectangle R in the band whose min y-coordinate is y-coordinate of s_i .
- Distance from s_i to any s_j above R is $\geq \delta$.
- Subdivide R into 8 squares each of side $\delta/2.$ The diagonals will have length $\delta/\sqrt{2}.$
- There can be at most 1 point per square.
- \cdot At most 7 other points can be in R.

Implementation of 2D-CLOSEST-PAIR(S)

Input: List S of 2D points Output: The closest pair of points in S and the distance between them.

1 **if**
$$|S| = 1$$
 then
2 **return** $(), \delta = \infty$
3 **if** $|S| = 2$ **then**
4 **return** $(p_1, p_2), \delta = |p_1 - p_2|$
5 Find "median" line *L* in *x*-coordinates
6 split *S* into $S_l < L, S_r > L$
7 $(l_1, l_2), \delta_l = 2D$ -Closest-Pair (S_l)
8 $(r_1, r_2), \delta_r = 2D$ -Closest-Pair (S_r)
9 $\delta = \min(\delta_l, \delta_r)$
10 find 2δ band around *L*, sort by *y*-coordinate
11 Find closest crossing pair
12
13 **return** closest pair found until now

13

if only single point then no closest pair if only two points then they are the closest pair ?? time

T(n/2) time; recursive call T(n/2) time; recursive call

O(n) time since we only compare each point to $\leq = 7$ points

- Note that we need $O(n \log n)$ time in lines 3 and 8 for sorting points, first by their *x*-coordinates and then by *y*-coordinates.
- This will cause the overall running time to be $O(n \log^2 n)$. (Verify!)
- Can we avoid this?
- Yes! Remember Mergesort?
- We could have the recursive calls return two sorted lists, one sorted by x-coordinate and the other sorted by y-coordinate.
- We could then merge these lists using the Merge part of Mergesort.
- Now the dominant time outside recursive calls is O(n) and the overall time complexity would be $O(n \log n)$. (Verify!)

5. Summary

- $\cdot\,$ General structure of Divide and Conquer
 - Break problem into pieces (usually equally sized)
 - Solve each piece (pieces can be "solved" by being discarded as in binary search, sometimes called Decrease-and-Conquer)
 - \cdot Combine the solutions to get the overall solution
- Lots of cleverness combining (Closest Pair) and/or in breaking into subproblems (we'll see in Selection next time).
- Set up and solve recurrence to get complexity.