
Number theoretic algorithms
Lecture 3

Akshar Varma
6th July, 2023

CS3000 Algorithms and Data



Why Number Theory

Complexity of Basic Arithmetic Operations

(Modular) Arithmetic

Fast exponentiation (binary)

GCD



1. Why Number Theory

“If the theory of numbers could be employed for any practical and obviously honourable purpose, if
it could be turned directly to the furtherance of human happiness or the relief of human suffering,
as physiology and even chemistry can, then surely neither Gauss nor any other mathematician
would have been so foolish as to decry or regret such applications. But science works for evil as
well as for good; and both Gauss and lesser mathematicians may be justified in rejoicing that there
is one science at any rate, and that their own, whose very remoteness from ordinary human
activities should keep it gentle and clean.”

– G. H. Hardy, A Mathematician’s Apology



Why Number Theory

• Many fields of computer science make extensive use of number theoretic algorithms.
• Modular arithmetic is a hydra that will keep showing up:
GCD, Diffie-Hellman, Primality testing, Coding theory (checksums, error-detection),
cryptography, …

• Euclid’s GCD algorithm is the oldest surviving algorithm and is the tool of number theory.
• While this course cannot cover all of this, we will present the foundational concepts.
• Knowing this is essentially knowing half of the steps in all basic number theoretic algorithms.

1 / 11



2. Complexity of Basic Arithmetic
Operations



Complexity of Basic Arithmetic Operations

• Addition: Depends on length of numbers.
• We might add 2 digit numbers in our head, but 100 digit numbers?
• Subtraction: Essentially the same as addition if we think of numbers as integers.
• Multiplication: Also depends on length of numbers.
• Grade school multiplication is quadratic.
• Every digit of one number with multiplied with every digit of the other.
• Division: Basically complexity of multiplication.
• Exponentiation: Repeated multiplication? We’ll do better.

2 / 11



3. (Modular) Arithmetic



Euclidean division: 𝑚 = 𝑞 ⋅ 𝑛 + 𝑟

• For all 𝑛 ∈ ℤ+ we can write any 𝑚 ∈ ℤ uniquely as follows:

𝑚 = 𝑛 ⋅ 𝑞 + 𝑟 𝑞 ∈ ℤ, 0 ≤ 𝑟 < 𝑛

• Here 𝑞 is the quotient and 𝑟 the remainder when 𝑚 is divided by 𝑛
• Euclidean division: Given 𝑚 and 𝑛 compute the values of 𝑞 and 𝑟.
• Shows up almost everywhere when dealing with integers in mathematics/computer science.
• We will see it in modulo arithmetic and Euclid’s GCD Algorithm.

3 / 11



Modular Arithmetic (mod 𝑛)

• In modular arithmetic, we fix some value of 𝑛 and then we ignore the quotient 𝑞.
• So 𝑚1 = 𝑞1𝑛 + 𝑟 is the same as 𝑚2 = 𝑞2𝑛 + 𝑟 in the (mod 𝑛) world.
• For example, in the (mod 12) world, 13 is the same as 1. Written as 13 ≡ 1 (mod 12).
• Hence 0100 and 1300 hrs both look the same on an analog clock: one o’clock.
• The above fact is the origin of the alternate term “clock arithmetic”.

• Since 𝑚1 mod 𝑛 = 𝑚2 mod 𝑛 = 𝑟, we will always be using numbers in {0, … , 𝑛 − 1}

4 / 11



Properties of Modular Arithmetic

• Basically: Add, multiply, cancel, subtract, etc. as normal.
(Optionally, but usually) take remainder at all intermediate points in calculation.

• Equivalence relation:
1. Reflexivity: 𝑎 ≡ 𝑎 (mod 𝑛)
2. Symmetry: 𝑎 ≡ 𝑏 (mod 𝑛) if 𝑏 ≡ 𝑎 (mod 𝑛)
3. Transitivity: If 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑏 ≡ 𝑐 (mod 𝑛), then 𝑎 ≡ 𝑐 (mod 𝑛)

• Let 𝑎 ≡ 𝑏 (mod 𝑛):
• For any integer 𝑘, we have 𝑎 + 𝑘 ≡ 𝑏 + 𝑘 (mod 𝑛) and 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛)
• For any non-negative integer 𝑘, we have 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛)

• Let 𝑎1 ≡ 𝑏1 (mod 𝑛), 𝑎2 ≡ 𝑏2 (mod 𝑛), then
𝑎1 + 𝑎2 = 𝑏1 + 𝑏2 (mod 𝑛), 𝑎1 ⋅ 𝑎2 = 𝑏1 ⋅ 𝑏2 (mod 𝑛), 𝑎1𝑎2 = 𝑏1𝑏2 (mod 𝑛)

• Cancellation (be a little careful when dividing):
• For any integer 𝑘, if 𝑎 + 𝑘 ≡ 𝑏 + 𝑘 (mod 𝑛) then 𝑎 ≡ 𝑏 (mod 𝑛)
• If 𝑘 and 𝑛 are coprime (no common factors), and if 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛) then 𝑎 ≡ 𝑏 (mod 𝑛)

• For proving any of these, or for other basic properties always resort to Euclidean division.

5 / 11



Modular Arithmetic Applications

1. Prove divisibility rules for the numbers: {2, 5, 10, 4, 8, 16, 2𝑛, 5𝑛, 10𝑛,9, 3, 6,11}
2. Consider the digit-root function defined for all non-negative integers 𝑛 ∈ ℤ+ as:

𝑑𝑟(𝑛) =
⎧{
⎨{⎩

𝑛 𝑛 < 10
𝑑𝑟(sum of digits of 𝑛) otherwise

Show that 𝑑𝑟(𝑛) = 𝑛 mod 9.
3. Suggested reading: “Casting out nines” on Wikipedia.

6 / 11



4. Fast exponentiation (binary)

“Yay binary numbers”



Quickly Computing 𝑎𝑏 (mod 𝑛)

𝑎𝑏 = 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋯ 𝑎
𝑎𝑏 (mod 𝑛) = (𝑎 ⋅ 𝑎 (mod 𝑛)) ⋅ 𝑎 (mod 𝑛) ⋯ 𝑎 (mod 𝑛)

Let: 𝑏 =
𝑚

∑
𝑖=0

2𝑖𝑏𝑖 binary representation

𝑎𝑏 = 𝑎∑𝑚
𝑖=0 2𝑖𝑏𝑖

𝑎𝑏 =
𝑚

∏
𝑖=0

𝑎2𝑖𝑏𝑖

If 𝑏𝑖 = 1 for all 𝑖, then the terms are just repeated squarings. Binary Exponentiation: Keep squaring
the base, accumulate to product if 1 [] 𝑏𝑖

7 / 11



repeated squaring

input: 𝑎, 𝑏 and optionally 𝑛
output: 𝑎𝑏 (mod 𝑛); (if 𝑛 not provided, use 𝑛 = 1)

1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑎
2 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 1
3 while 𝑏 > 0
4 if 𝑏%2 = 1 if last bit is one
5 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ⋅ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 if bit is 1, accumulate
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⋅ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do squaring
7 𝑏 = 𝑏/2 divide by 2 to reduce length by 1 bit
8 return 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟

8 / 11



5. GCD

”[The Euclidean algorithm is] the granddaddy of all algorithms, because it is the oldest nontrivial
algorithm that has survived to the present day.” – Donald Knuth



Greatest Common Divisor (GCD)

• The GCD of two integers 𝑎, 𝑏 is the largest number 𝑑 such that 𝑑 divides both 𝑎 and 𝑏.
• Note that the GCD is always positive since 1 always divides any two integers.
• If 𝑎, 𝑏 have no common factors then the GCD is 1 since there are no larger factors.
• Whenever 𝐺𝐶𝐷(𝑎, 𝑏) = 1, we call 𝑎 and 𝑏 to be co-prime (prime, relative to each other).
• The oldest known surviving algorithm is from Euclid’s Elements for computing 𝐺𝐶𝐷(𝑎, 𝑏).

9 / 11



GCD Algorithm Key Insight via Invariance

• Let 𝐺𝐶𝐷(𝑎, 𝑏) = 𝑑 and let 𝑎 = 𝑘1𝑑, 𝑏 = 𝑘2𝑑 with 𝑘1 ≥ 𝑘2 ≥ 1.
• By definition, 𝐺𝐶𝐷(𝑎, 𝑏) = 𝑑 ⟹ 𝐺𝐶𝐷(𝑘1, 𝑘2) = 1 (coprime).
Otherwise 𝐺𝐶𝐷(𝑎, 𝑏) = 𝑑 ⋅ 𝐺𝐶𝐷(𝑘1, 𝑘2) > 𝑑 which contradicts 𝐺𝐶𝐷(𝑎, 𝑏) = 𝑑.

• Consider: 𝑎′ = (𝑘1 − 𝑘2)𝑑 < 𝑎.
• Insight! 𝐺𝐶𝐷(𝑎, 𝑏) = 𝐺𝐶𝐷(𝑎′, 𝑏) = 𝐺𝐶𝐷((𝑘1 − 𝑘2)𝑑, 𝑘2𝑑).
If 𝑐 > 1, 𝑘1 − 𝑘2 = 𝑥 ⋅ 𝑐, 𝑘2 = 𝑦 ⋅ 𝑐, then 𝑘1 = (𝑥 + 𝑦) ⋅ 𝑐 ⟹ 𝐺𝐶𝐷(𝑘1, 𝑘2) = 𝑐 > 1.
Contradiction!

• Subtraction keeps GCD invariant ⟹ GCD will stay invariant after repeated subtractions.
• 𝐺𝐶𝐷(𝑎, 𝑏) = 𝐺𝐶𝐷((𝑘1 − 𝑞1𝑘2)𝑑, 𝑘2𝑑) where 𝑞1 is largest number s.t. (𝑘1 − 𝑞1𝑘2) ≥ 0.
• Note that by definition, (𝑘1 − 𝑞1𝑘2)𝑑 = 𝑎 mod 𝑏. So even remainder keeps GCD invariant!
• Euclid’s algorithm crux: 𝐺𝐶𝐷(𝑎, 𝑏) = 𝐺𝐶𝐷(𝑎 mod 𝑏, 𝑏).

10 / 11



Euclid’s GCD Algorithm

Input: Integers 𝑎, 𝑏
Output: The greatest common divisor 𝐺𝐶𝐷(𝑎, 𝑑) of 𝑎 and 𝑏

1 if 𝑎 < 𝑏 then if 𝑏 is larger
2 𝑎, 𝑏 = 𝑏, 𝑎 swap to make 𝑎 larger
3 if 𝑏 = 0 then if the smaller number is 0
4 return max(1, 𝑎) the larger number must be GCD (unless < 1)
5 return GCD(𝑎 mod 𝑏, 𝑏) recurse after invariance preserving modulus operation

11 / 11


