Administrativia

Lecture 0

Akshar Varma

3rd July, 2023

CS3000 Algorithms and Data

Logistics and Links

Textbooks and references

Assessment Policies

Recommended tools

1. Logistics and Links

- Location: Richards 165
- Dates: [3rd July 17 August] 2023

	Mon	Tue	Wed	Thu	
0950 - 1130	\checkmark	\checkmark	\checkmark	\checkmark	Lectures
1140 - 1245	Akshar OH	\checkmark	Akshar OH	\checkmark	Recitations

Staff	Name	Office Hours	Location
Instructor	Akshar Varma	MW; 1130-1300	Richards 165
Teaching Assistant	Nolan Lemery	TBD	TBD
Teaching Assistant	Ankit Ramakrishnan	TBD	TBD

- \cdot Canvas will be the focal point which links to other places.
- Use Piazza for discussions, questions, random musings (somewhat relevant to Algo).
- Post on Piazza before emailing TAs and instructor. (Audience of 40 vs. 4)
- Get help quicker and more efficiently from classmates, the TA, and instructor.

• If you have not been added (to Canvas), please contact me and I will fix it. You should be able to join Piazza+Gradescope from there. Link to course webpage: https://aksharvarma.org/CS3000-2023-Summer-2/

All this content will be copied to Canvas anyway.

2. Textbooks and references

Abbreviation	Name	Authors
[KT] [DPV] [JE] [CLRS]	Algorithm Design Algorithms Algorithms Introduction to Algorithms	Kleinberg and Tardos Dasgupta, Papadimitriou, Vazirani Jeff Erickson Cormen, Leiserson, Rivest, Stein
[LLM]	Mathematics for Computer Science (2018)	Lehman, Leighton, and Meyer

3. Assessment Policies

- Each problem's solution is one of:
 - {unsatisfactory, somewhat satisfactory, almost/nearly satisfactory, completely satisfactory}
 - $\cdot\,$ in letter grades these are roughly: {F/D, C, B, A}
 - numerically, there are: {0, 2, 3, 4}
 - simpler problems only use {unsatisfactory, satisfactory} or {0, 4}.
- Only care about how satisfactorily the solution: meet correctness+clarity standards/problem specific requirements.
- Grade for *a* quiz/PS, etc.: slight variation on averaging (specified each time).
- $\cdot\,$ Averaging gets grade for quizzes, grade for problem sets, etc.
- Finally, a weighted average gives course grade.

Grade Letter and Numerical Equivalents

А+ А А-	4.333 4.000 3.667	Outstandingly Satisfactory Completely Satisfactory
B+ B B-	3.333 3.000 2.667	Nearly Satisfactory
C+ C C-	2.333 2.000 1.667	Somewhat Satisfactory
D+ D D-	1.333 1.000 0.667	Unsatisfactory
F	0.000	Failure/(Very) Unsatisfactory

5 Problem Sets	35%	lowest score dropped out of 6 PSes
6 Quizzes	15%	lowest score dropped out of 7 quizzes
1 Midterm Exam	15%	open notes
1 Final Exam	30%	open notes
Participation	5%	scribe notes and collaboration problems
Total	100%	

- Submit all problem sets, as a PDF typeset in <code>ETEX</code> on Gradescope.
- You can be up to 24 hours late. First 3 times, no penalty. Then drop a grade point/letter (3.45 \longrightarrow 2.45).
- Attempt problems by yourself first.
- Collaboration on homework problems is fine (with students in this class).
- Discussion of ideas/strategies (but not solutions themselves) is highly encouraged.
- In all cases, you must write up your own solutions, in your own words and list all collaborators!
- Finding solutions to homework problems by any other means is strictly prohibited.

- Both exams will be open notes.
- \cdot Two A4/US letter paper sheets \implies 4 pages/sides.
- 3 pages will be instructor provided (with input from all of you).
- The last page is individual's choice.

- 7 quizzes (best 6 graded), on Gradescope, 15-30 minutes long.
- Most likely 5 problems: 3 multiple choice, 2 short answer.
- Each is correct or incorrect. Grade determined based on how many correct. A if $\geq 5/5$, B if $\geq 4/5$, C if $\geq 3/5$, D if $\geq 2/5$, F if $\leq 1/5$.

- When the solution is not clear or unknown, we often see tedious attempts.
- · Long (incorrect) essays filled with keywords/buzzwords \rightarrow unsatisfactory.
- Instead, do this:
 - 1. In your own words explain what the problem asks for.
 - 2. What do you know to solve?
 - 3. What is causing you to get stuck? Where is the difficulty?
 - 4. What would you need to know to proceed?
- This (if written clearly) \longrightarrow somewhat satisfactory.

Other Logistics and Miscellany

- Classroom environment
 - Please, please, ask questions and answer questions in lectures, office hours, recitations, and on the discussion forum.
 - Participate in the iterate-introspect-improve loop; even when unsure of correctness.
 - Activities that do not disrupt other are generally okay. Examples include (if quiet): being late, eating, using devices, etc.
 - Be civil. Respect everyone. *Be excellent to each other.*
- Academic integrity:
 - Basically, don't cheat/copy from anyone/anywhere/anything.
 - Honor system for the most part.
- Accessibility and DRC
 - If any part of the course is inaccessible for any reason, let me know so I can fix it.
 - $\cdot\,$ Those who need accommodations from DRC, please email me as soon as possible.

4. Recommended tools

- LaTeX has a learning curve but *absolutely worth it*.
- Most academic technical publications are in LaTeX.
- Even otherwise, few tools allow the flexibility, control and reproducibility that LaTeX does. (These slides are written using $\mathbb{E}_{\mathbb{E}}X$.)
- Find LaTeX resources on the webpage.

- Essentialy: https://missing.csail.mit.edu/
- · Lecture on Version Control (Git \longrightarrow Magit).
- Lecture on Editors (Emacs is my choice, but (Neo)Vim is nice too).
- Metaprogramming (Make, Makefiles).